
1

Studying Duplicate Logging Statements and
Their Relationships with Code Clones

Zhenhao Li, Student Member, IEEE, Tse-Hsun (Peter) Chen, Member, IEEE, Jinqiu Yang, Member, IEEE,
and Weiyi Shang, Member, IEEE

Abstract—Developers rely on software logs for a variety of tasks, such as debugging, testing, program comprehension, verification,
and performance analysis. Despite the importance of logs, prior studies show that there is no industrial standard on how to write
logging statements. In this paper, we focus on studying duplicate logging statements, which are logging statements that have the same
static text message. Such duplications in the text message are potential indications of logging code smells, which may affect
developers’ understanding of the dynamic view of the system. We manually studied over 4K duplicate logging statements and their
surrounding code in five large-scale open source systems: Hadoop, CloudStack, Elasticsearch, Cassandra, and Flink. We uncovered
five patterns of duplicate logging code smells. For each instance of the duplicate logging code smell, we further manually identify the
potentially problematic (i.e., require fixes) and justifiable (i.e., do not require fixes) cases. Then, we contact developers to verify our
manual study result. We integrated our manual study result and developers’ feedback into our automated static analysis tool, DLFinder,
which automatically detects problematic duplicate logging code smells. We evaluated DLFinder on the five manually studied systems
and three additional systems: Camel, Kafka and Wicket. In total, combining the results of DLFinder and our manual analysis, we
reported 91 problematic duplicate logging code smell instances to developers and all of them have been fixed. We further study the
relationship between duplicate logging statements, including the problematic instances of duplicate logging code smells, and code
clones. We find that 83% of the duplicate logging code smell instances reside in cloned code, but 17% of them reside in micro-clones
that are difficult to detect using automated clone detection tools. We also find that more than half of the duplicate logging statements
reside in cloned code snippets, and a large portion of them reside in very short code blocks which may not be effectively detected by
existing code clone detection tools. Our study shows that, in addition to general source code that implements the business logic, code
clones may also result in bad logging practices that could increase maintenance difficulties.

Index Terms—log, code smell, duplicate log, code clone, static analysis, empirical study.

F

1 INTRODUCTION

SOFTWARE logs are widely used in software systems to
record system execution behaviors. Developers use the

generated logs to assist in various tasks, such as debug-
ging [1]–[8], testing [9]–[12], program comprehension [13]–
[15], system verification [16], [17], and performance analy-
sis [18]–[21]. A logging statement (i.e., code that generates a
log) contains a static message, to-be-recorded variables, and
log verbosity level. For example, in the logging statement:
logger.error(“Interrupted while waiting for fencing command: ”
+ cmd), the static text message is “Interrupted while waiting
for fencing command:”, and the dynamic message is from
the variable cmd, which records the command that is being
executed. The logging statement is at the error level, which
is the level for recording failed operations [22].

Even though developers have been analyzing logs for
decades [23], there exists no industrial standard on how
to write logging statements [3], [24]. Prior studies often
focus on recommending where logging statements should
be added into the code (i.e., where-to-log) [25]–[28], and
what information should be added in logging statements
(i.e., what-to-log) [1], [14], [29], [30]. A few recent stud-
ies [31], [32] aim to detect potential problems in logging
statements. However, these studies often only consider the

• Z. Li, T. Chen J. Yang and W. Shang are with the Department of Com-
puter Science and Software Engineering, Concordia University, Montreal,
Quebec, Canada.
E-mail: l zhenha,peterc,jinqiuy,shang@encs.concordia.ca

appropriateness of one single logging statement; while logs
are typically analyzed in sequences or clusters [1], [18]. In
other words, we consider that the appropriateness of a log
is also influenced by other logs that are generated in system
execution.

In particular, an intuitive case of such influence is dupli-
cate logs, i.e., multiple logs that have the same text message.
Even though each log itself may be impeccable, duplicate
logs, in some occasions, may affect developers’ understand-
ing of the dynamic view of the system. For example, as
shown in Figure 1, there are two logging statements in
two different catch blocks, which are associated with the
same try block. These two logging statements have the same
static text message and do not include any other error-
diagnostic information. Thus, developers cannot easily dis-
tinguish what is the occurred exception when analyzing the
produced logs. Since developers rely on logs for debugging
and program comprehension [14], such duplicate logging
statements may negatively affect developers’ activities in
maintenance and quality assurance.

To help developers improve logging practices, in this
paper, we focus on studying duplicate logging statements in
the source code. We conducted a manual study on five large-
scale open source systems, namely Hadoop, CloudStack,
ElasticSearch, Cassandra and Flink. We first used static
analysis to identify all duplicate logging statements, which
are defined as two or more logging statements that have
the same static text message. We then manually study all



2

...
} catch (AlreadyClosedException closedException) {

s_logger.warn("Connection to AMQP service is lost.");
} catch (ConnectException connectException) {

s_logger.warn("Connection to AMQP service is lost.");
}
...

Fig. 1. An example of duplicate logging code smell that we detected in
CloudStack. The duplicate logging statements in the two catch blocks
contain insufficient information (e.g., no exception type or stack trace) to
distinguish the occurred exception.

Section 2:
Identifying

duplicate logging
statements

Identified 
duplicate 

logging statements
Manual 
analysis

Patterns of
duplicate logging

code smells

Section 3: Patterns of duplicate logging code smells

RQ1: Evaluate on
exisitng systems

Problematic and
justifiable cases of
duplicate logging

code smells

Section 4: 
Automatically 

detecting duplicate
logging code smells

DLFinder Case Study
Results

Inquirying
 developers

Outcome of 
the study

Study steps

Data

RQ2: Evaluate on
new systems

RQ3: New instances
introduced

Source code

Section 5:
Case Study

Results

Automated and
manual code

clone analysis

Clone detection
results

RQ4: Investigating the relationship between
problematic instances and code clones

RQ5: Investigating the relationship between
duplicate logging statements and code clones

Section 6 & Section 7: Studying Duplicate Logging
Statements and Code Clones 

Fig. 2. The overall process of our study.

the (over 4K) identified duplicate logging statements and
uncovered five patterns of duplicate logging code smells. We
follow prior code smell studies [33], [34], and consider
duplicate logging code smell as a “surface indication that
usually corresponds to a deeper problem in the system”.
Thus, not all of the duplicate logging code smell are prob-
lematic and require fixes (i.e., problematic duplicate logging
code smells). In particular, context (e.g., surrounding code
and usage scenario of logging) may play an important role
in identifying fixing opportunities. We further categorized
duplicate logging code smells into potentially problematic
or justifiable cases. In addition to our manual analysis,
we sought confirmation from developers on the manual
analysis result. For some of the potentially problematic
duplicate logging code smells, developers considered them
as technical debt and were reluctant to fix. For the rest
of the potentially problematic instances, developers agreed
that they are problematic and fixed them. For the justifiable
ones, we communicated with developers for discussion
(e.g., emails or posts on developers’ forums).

We implemented a static analysis tool, DLFinder, to au-
tomatically detect problematic duplicate logging code smells.
DLFinder leverages the findings from our manual study,
including the uncovered patterns of duplicate logging code
smells and the categorization on problematic and justifiable
cases. We evaluated DLFinder on eight systems: five are
from the manual study and three are additional systems.
We also applied DLFinder on the updated versions of the
five manually studied systems. The evaluation shows that
the uncovered patterns of the duplicate logging code smells

also exist in the additional systems, and duplicate logging
code smells may be introduced over time. An automated
approach such as DLFinder can help developers avoid
duplicate logging code smells as systems evolve. In total,
we reported 91 instances of duplicate logging code smell to
developers and all the reported instances are fixed. Figure 2
shows the overall process of finding and detecting duplicate
logging code smells.

We further investigate the relationship between the prob-
lematic instances of duplicate logging code smells and code
clones. Intuitively, duplicate logging statements could be re-
lated to, or are even a consequence of code clones (e.g., log-
ging statements can be copied along with other code since
cloning is often performed hastily without much attention
on the context [35]). The findings of our study may show
other negative effect of code clones on logging statements
and inspire future code clone and logging research. We
combine both an automated code clone detection tool (i.e.,
NiCad [36]) and manual study on the eight studied systems
to examine if the duplicate logging code smell instances
reside in cloned code snippets. We find that 83% of the
problematic duplicate logging code smell instances reside in
cloned code snippets; however, 17% of the instances reside
in very short code blocks that are difficult to detect using
automated code detection tools.

In summary, this paper makes the following contribu-
tions:

• We uncovered five patterns of duplicate logging code
smells through an extensive manual study on over
4K duplicate logging statements.

• We presented a categorization of duplicate logging
code smells (i.e., problematic or justifiable), based on
both our manual analysis and developers’ feedback.

• We proposed DLFinder, a static analysis tool that
integrates our manual study result and developers’
feedback to detect problematic duplicate logging
code smells.

• We reported 91 instances of problematic duplicate
logging code smells to developers (DLFinder is able
to detect 81 of them), and all of them are fixed.

• We found that most of the problematic instances
of duplicate logging code smells (83.0%) reside in
cloned code snippets, which indicates that code
clones may also result in bad logging practices that
increase maintenance difficulties.

• We found that more than half of the duplicate log-
ging statements reside in cloned code snippets, and
a large portion of them reside in short code blocks
(i.e., micro-clones) which are difficult to detect using
existing code clone detection tools.

• We found that duplicate logging statements have a
non-negligible impact on helping the detection of
code clones. After removing them, from 25.0% to
47.1% of the cloned code snippets with duplicate
logging statements can not be detected as cloned
code snippets.

• We provided a replication package of our paper for
future studies on logging code and code clones1.

1. We share the data of this paper at: https://github.com/
SPEAR-SE/Duplicate Logs Data

https://github.com/SPEAR-SE/Duplicate_Logs_Data
https://github.com/SPEAR-SE/Duplicate_Logs_Data


3

Our study provides an initial step on creating a logging
guideline for developers to improve the quality of logging
code. DLFinder is also able to detect duplicate logging code
smells with high precision and recall. Future code clone
studies should also consider other possible side effects of
code clones (e.g., understanding system runtime behaviour),
and may consider including information from other soft-
ware artifacts (e.g., duplicate logging statements) to further
improve clone detection results.

This work extends our previous work [37]. First, we
add one more system to our manual study and extend our
evaluation to include an additional system and compare our
text-analysis-based algorithm on detecting inconsistently
updated log messages with two baselines. We also add dis-
cussions on duplicate logging statements that do not belong
to one of the uncovered smells. Second, we study the re-
lationship between duplicate logging statements, including
the problematic instances of duplicate logging code smells,
and code clones Finally, we investigate the potential impact
between duplicate logging statements and code clones.
Paper organization. Section 2 describes data preparation
and the studied systems. Section 3 discusses the process
and the results of our manual study. Section 4 discusses
the implementation details of DLFinder. Section 5 presents
the case study results. Section 6 investigates the relation-
ship between problematic instances of duplicate logging
code smells and code clones. Section 7 investigates the
relationship between duplicate logging statements and code
clones, as well as the potential impact of duplicate logging
statements on detecting code clones. Section 8 discusses the
threats to validity of our study. Section 9 surveys related
work. Section 10 concludes the paper. Appendix A discusses
the false positive rate of the automated clone detection tool.

2 IDENTIFYING DUPLICATE LOGGING STATE-
MENTS FOR MANUAL STUDY

Definition and how to identify duplicate logging state-
ments. We define duplicate logging statements as logging
statements that have identical static text messages. We fo-
cus on studying the log message because such semantic
information is crucial for log understanding and system
maintenance [14], [38]. As an example, the two following
logging statements are considered duplicate: “Unable to cre-
ate a new ApplicationId in SubCluster” + subClusterId.getId(),
and “Unable to create a new ApplicationId in SubCluster” + id.

To prepare for a manual study, we identify duplicate
logging statements by analyzing the source code using static
analysis. In particular, the static text message of each logging
statement is built by concatenating all the strings (i.e., con-
stants and values of string variables) and abstractions of the
non-string variables. We also extract information to support
the manual analysis, such as the types of variables that are
logged, and the log level (i.e., fatal, error, warn, info, debug, or
trace). Log levels can be used to reduce logging overheads
in production (e.g., only record info and more severe levels)
and may target different phases of software maintenance
(e.g., debug logs may be used for debugging and info logs
may provide information for general audience) [38], [39].
If two or more logging statements have the same static text
message, they are identified as duplicate logging statements.

TABLE 1
An overview of the studied systems.

System Version LOC NOL NODL NODS

Cassandra 3.11.1 358K 1.6K 113 (7%) 46
CloudStack 4.9.3 1.18M 11.7K 2.3K (20%) 865
Elasticsearch 6.0.0 2.12M 1.7K 94 (6%) 40
Flink 1.7.1 177K 2.5K 467 (11%) 203
Hadoop 3.0.0 2.69M 5.3K 496 (9%) 217

Camel 2.21.1 1.68M 7.3K 2.3K (32%) 886
Kafka 2.1.0 542K 1.5K 406 (27%) 104
Wicket 8.0.0 381K 0.4K 45 (11%) 21

LOC: lines of code, NOL: number of logging statements, NODL:
number of duplicate logging statements, NODS: number of duplicate

logging statements sets.

Studied systems. Table 1 shows the statistics of the studied
systems. We identify duplicate logging statements from the
top five large-scale open source Java systems in the table
for our manual analysis: Hadoop, CloudStack, Elasticsearch,
Cassandra and Flink which are commonly used in prior
studies for log-related research [31], [32], [40]–[42]. The stud-
ied systems also use popular Java logging libraries [43] (e.g.,
Log4j [22] and SLF4J [44]). Hadoop is a distributed comput-
ing framework, CloudStack is a cloud computing platform,
Elasticsearch is a distributed search engine, Cassandra is a
NoSQL database system, and Flink is a stream-processing
framework. These systems belong to different domains and
are well maintained. We study all Java source code files
in the main branch of each system and exclude test files,
since we are more interested in studying duplicate logging
statements that may affect log understanding in production.
In general, we find that there is a non-negligible number of
duplicate logging statements in the studied systems (6% to
20%).

3 PATTERNS OF DUPLICATE LOGGING CODE
SMELLS

In this section, we conduct a manual study to investigate
duplicate logging statements. Note that duplicate logging
statements may not necessarily be a problem. Hence, our
goal is to uncover patterns of potential code smells that
may be associated with duplicate logging statements (i.e.,
duplicate logging code smells). Similar to prior code smell
studies, we consider duplicate logging code smells as a
“surface indication that usually corresponds to a deeper problem
in the system” [33], [34]. Such duplicate logging code smells
may be indications of logging problems that require fixes.

We categorize each duplicate logging code smell instance
as either problematic (i.e., require fixes) or justifiable (i.e.,
do not require fixes), by understanding the surrounding
code. Not every duplicate logging code smell is problem-
atic. Intuitively, one needs to consider the code context to
decide whether a code smell instance is problematic and
requires fixes. As shown in prior studies [3], [25], [40],
logging decisions, such as log messages and log levels, are
often associated with the structure and semantics of the
surrounding code. In addition to the manual analysis by
the authors, we also ask for developers’ feedback regarding
both the problematic and justifiable cases. By providing a
more detailed understanding of code smells, we may better
assist developers to improve logging practices and inspire
future research.



4

Manual study process. We conduct a manual study by
analyzing all the duplicate logging statements in the five
studied systems. In total, we studied 1,371 sets of duplicate
logging statements (more than 4K logging statements in
total; each set contains two or more logging statements with
the same static message). Specifically, we examine the four
following criteria when studying the code snippets: 1) the
generated log messages record incorrect information (i.e.,
the recorded method name is different from the method
where the log message is generated), 2) the recorded in-
formation cannot be used to distinguish the occurred errors
(e.g., to distinguish different exception types), 3) there are
inconsistencies in terms of log levels or the recorded debug-
ging information, and 4) the duplicated log message may
need to be updated to ensure consistency (i.e., maintenance
of logs).
The process of our manual study involves five phases:

Phase I: The first two authors manually studied 301
randomly sampled (based on 95% confidence level and 5%
confidence interval [45]) sets of duplicate logging statements
and the surrounding code to derive an initial list of dupli-
cate logging code smell patterns. All disagreements were
discussed until a consensus was reached.

Phase II: The first two authors independently categorized
all of the 1,371 sets of duplicate logging statements to the de-
rived patterns in Phase I. We did not find any new patterns
in this phase. The results of this phase have a Cohen’s kappa
of 0.811, which is a substantial-level of agreement [46].

Phase III: The first two authors discussed the categoriza-
tion results obtained in Phase II. All disagreements were
discussed until a consensus was reached.

Phase IV: The first two authors further studied all logging
code smell instances that belong to each pattern to identify
justifiable cases that may not need fixes. The instances that
do not belong to the category of justifiable are considered
potentially problematic and may require fixes.

Phase V: We verified both the problematic and justifiable
instances of logging code smells with developers by creat-
ing pull requests, sending emails, or posting our findings
on developers’ forums (e.g., Stack Overflow). We reported
every instance that we believe to be problematic (i.e., require
fixes), and reported a number of instances for each justifiable
category.
Results. In total, we uncovered five patterns of duplicate
logging code smells. Table 2 lists the uncovered code smell
patterns and the corresponding examples. Table 3 shows the
number of problematic code smell instances for each pattern
that we manually found. Below, we discuss each pattern
according to the following template:
Description: A description of the pattern of duplicate log-

ging code smell.
Example: An example of the pattern.
Code smell instances: Discussions on the manually-

uncovered code smell instances. We also discuss the
justifiable cases if we found any.

Developers’ feedback: A summary of developers’ feedback
on both the problematic and justifiable cases.

Pattern 1: Inadequate information in catch blocks (IC).
Description. Developers usually rely on logs for error diag-
nostics when exceptions occur [47]. However, we find that

TABLE 2
Patterns of duplicate logging code smells and corresponding examples.

Pattern Example

IC

IE

LM

IL

DP

TABLE 3
Number of problematic instances (Prob.) verified by our manual study

and developers’ feedback, number of instances of technical debt
(Tech.), and total number of instances (Total) including non-problematic

instances.

IC IE LM IL DP
Prob. Total Prob. Total Prob. Total Prob. Total Tech. Total

Cassandra 1 1 0 1 0 0 0 3 2 2
CloudStack 8 8 4 14 27 27 0 47 107 107
Elasticsearch 1 1 0 5 1 1 0 9 3 3
Flink 0 0 2 5 4 4 0 14 24 24
Hadoop 5 5 0 0 9 9 0 17 27 27

Total 15 15 6 25 41 41 0 90 163 163

sometimes, duplicate logging statements in different catch
blocks of the same try block may cause debugging difficul-
ties since the logs fail to tell which exception occurred.
Example. As shown in Table 2, in the ParamProcessWorker
class in CloudStack, the try block contains two catch blocks;
however, the log messages in these two catch blocks are
identical. Since both the exception message and stack trace
are not logged, once one of the two exceptions occurs,
developers may encounter difficulties in finding the root
causes and determining the occurred exception.



5

Code smell instances. After examining all the instances of
IC, we find that all of them are potentially problematic and
require fixes. For all the instances of IC, none of the excep-
tion type, exception message, and stack trace are logged.
Developers’ feedback. We reported all the problematic in-
stances of IC (15 instances), and all of them are fixed by
adding more error diagnostic information (e.g., stack trace)
into the logging statements. Developers agree that IC will
cause confusion and insufficient information in the logs,
which may increase the difficulties of error diagnostics.

Pattern 2: Inconsistent error-diagnostic information (IE).
Description. We find that sometimes duplicate logging state-
ments for recording exceptions may contain inconsistent
error-diagnostic information (e.g., one logging statement
records the stack trace and the other does not), even though
the surrounding code is similar.
Example. As shown in Table 2, the two classes
in CloudStack: CreatePortForwardingRuleCmd and
CreateFirewallRuleCmd have similar functionalities. The
two logging statements have the same static text mes-
sage and are in methods with identical names (i.e., cre-
ate(), not shown due to space restriction). The create()
method in CreatePortForwardingRuleCmd is about cre-
ating rules for port forwarding, and the method in
CreateFirewallRuleCmd is about creating rules for fire-
walls. These two methods have very similar code structure
and business logic. However, the two logging statements
record different information: One records the stack trace
information and the other one only records the exception
message (i.e., ex.getMessage()). Since the two logging state-
ments have similar context, the error-diagnostic information
recorded by the logs may need to be consistent for the ease
of debugging. We reported this example, which is now fixed
to have consistent error-diagnostic information.
Code smell instances. We find 25 instances of IE (Table 3),
and six of them are considered problematic in our manual
study. From the remaining instances of IE, we find three
justifiable cases that may not require fixes.

Justifiable case IE.1: Duplicate logging statements record gen-
eral and specific exceptions. For 11/25 instances of IE, we find
that the duplicate logging statements are in the catch blocks
of different types of exception. In particular, one duplicate
logging statement is in the catch block of a generic exception
(i.e., the Exception class in Java) and the other one is in the
catch block of a more specific exception (e.g., application-
specific exceptions such as CloudRuntimeException). In
all of the 11 cases, we find that one log would record the
stack trace for Exception, and the duplicate log would only
record the type of the occurred exception (e.g., by calling
e.getMessage()) for a more specific exception. The rationale
may be that generic exceptions, once occurred, are often
not expected by developers [47], so it is important that
developers record more error-diagnostic information.

Justifiable case IE.2: Duplicate logging statements are in the
same catch block for debugging purposes. For 6/25 instances
of IE, the duplicate logging statements are in the same catch
block and developers’ intention is to use a duplicate logging
statement at debug level to record rich error-diagnostic in-
formation such as stack trace (and the log level of the other
logging statement could be error). The extra logging state-

ments at debug level help developers debug the occurred
exception and reduce logging overhead in production [39]
(i.e., logging statements at debug level are turned off).

Justifiable case IE.3: Having separate error-handling classes.
For 2/25 instances, we find that the error-diagnostic infor-
mation is handled by creating an object of an error-handling
class. As an example from CloudStack:
public final class LibvirtCreateCommandWrapper {

...
} catch (final CloudRuntimeException e) {

s_logger.debug("Failed to create volume: " +
e.toString());

return new CreateAnswerErrorHandler(command, e);
}

...
}

public class KVMStorageProcessor {
...

} catch (final CloudRuntimeException e) {
s_logger.debug("Failed to create volume: ", e);
return new CopyCmdAnswerErrorHandler(e.toString());

}
...

}

In this example, extra logging is added by using error-
handling classes (i.e., CreateAnswerErrorHandler and
CopyCmdAnswerErrorHandler) to complement the log-
ging statements. As a consequence, the actual logged in-
formation is consistent in these two methods: One method
records e.toString() in the logging statement and records the
exception variable e through an error-handling class; the
other method records e in the logging statement and records
e.toString() through an error-handling class.
Developers’ feedback. We reported all the six instances of IE
that we consider problematic to developers, all of which are
fixed. Moreover, we ask developers whether our conjecture
was correct for each of the justifiable cases of IE. Developers
confirmed our observation on the justifiable cases. They
agreed that those cases are not problematic thus do not
require fixes.
Pattern 3: Log message mismatch (LM).
Description. Sometimes after developers copy and paste a
piece of code to another method or class, they may forget
to change the log message. This results in having duplicate
logging statements that record inaccurate system behaviors.
Example. As an example, in Table 2, the method doScale-
Down() is a code clone of doScaleUp() with very similar code
structure and minor syntactical differences. However, de-
velopers forgot to change the log message in doScaleDown(),
after the code was copied from doScaleUp() (i.e., both log
messages contain scaling up). Such instances of LM may
cause confusion when developers analyze the logs.
Code smell instances. We find that there are 41 instances
of LM that are caused by copying-and-pasting the logging
statement to new locations without proper modifications.
For all the 41 instances, the log message contains words of
incorrect class or method name that may cause confusion
when analyzing logs.
Developers’ feedback. Developers agree that the log mes-
sages in LM should be changed in order to correctly record
the execution behavior (i.e., update the copy-and-pasted log
message to contain the correct class/method name). We
reported all the 41 instances of LM that we found and all
of them are fixed.



6

Pattern 4: Inconsistent log level (IL).
Description. Log levels (e.g., fatal, error, info, debug, or trace)
allow developers to specify the verbosity of the log message
and to reduce logging overhead when needed [39]. A prior
study [38] shows developers frequently modify log levels to
find the most adequate level. We find that there are dupli-
cate logging statements that, even though the log messages
are exactly the same, the log levels are different.
Example. In the IL example shown in Table 2, the two meth-
ods, which are from the same class CompactionManager,
have very similar functionality (i.e., both try to perform
cleanup after compaction), but different log levels.
Code smell instances. We find three justifiable cases in
IL that may be developers’ intended behavior. We do not
find problematic instances of IL after communicating with
developers – Developers think the problematic instances
identified by our manual analysis may not be problems.

Justifiable case IL.1: Duplicate logging statements are in the
catch blocks of different types of exception. Similar to what we
observed in IE, we find that for 9/90 instances, the log level
for a more generic exception is usually more severe (e.g.,
error level for the generic Java Exception and info level for
an application-specific exception). Generic exceptions might
be unexpected to developers [47], so developers may use a
higher log level (e.g., error) to record exception messages.

Justifiable case IL.2: Duplicate logging statements are in dif-
ferent branches of the same method. There are 42/90 instances
belong to this case. Below is an example from Elasticsearch,
where a set of duplicate logging statements occur in the
same method but in different branches.

if (lifecycle.stoppedOrClosed()) {
logger.trace("failed to send ping transport message",

e);
} else {

logger.warn("failed to send ping transport message",
e);

}

In this case, developers already know the desired log level
and intend to use different log levels due to the difference
in execution (i.e., in the if-else block).

Justifiable case IL.3: Duplicate logging statements are followed
by error-handling code. There are 19/90 instances that are
observed to have such characteristics: In a set of dupli-
cate logging statements, some statements have log levels
of higher verbosity, and others have log levels of lower
verbosity. However, the duplicate logging statement with
lower verbosity log level is followed by additional error
handling code (e.g., throw a new Exception(e);). Therefore, the
error is handled elsewhere (i.e., the exception is re-thrown),
and may be recorded at a higher-verbosity log level.
Developers’ feedback. In all the instances of IL that we
found, developers think that IL may not be a problem.
In particular, developers agreed with our analysis on the
justifiable cases. However, developers think the problematic
instances of IL from our manual analysis may also not
be problems. We concluded the following two types of
feedback from developers on the “suspect” instances of IL
(i.e., 20 problematic ones from our manual analysis out of
the 90 instances of IL). The first type of developers’ feedback
argues the importance of semantics and usage scenario
of logging in deciding the log level. A prior study [38]
suggests that logging statements that appear in syntactically

similar code, but with inconsistent log levels, are likely
problematic. However, based on the developers’ feedback
that we received, IL still may not be a concern, even if the
duplicate logging statements reside in very similar code.
A developer indicated that “conditions and messages are
important but the context is even more important”. As an
example, both of the two methods may display messages
to users. One method may be displaying the message to
local users with a debug logging statement to record failure
messages. The other method may be displaying the message
to remote users with an error logging statement to record
failure messages (problems related to remote procedure calls
may be more severe in distributed systems). Hence, even if
the code is syntactically similar, the log level has a reason to
be different due to the different semantics and purposes of
the code (i.e., referred to as different contexts in developers’
responses). Our findings show that future studies should
consider both the syntactic structure and semantics of the
code when suggesting log levels.

The second type of developers’ feedback acknowledges
the inconsistency. However, developers are reluctant to fix
such inconsistencies since developers do not view them as
concerns. For example, we reported the instance of IL in
Table 2 to developers. A developer replied: “I think it should
probably be an ERROR level, and I missed it in the review
(could make an argument either way, I do not feel strongly
that it should be ERROR level vs INFO level.” Our opinions
(i.e., from us and prior studies [38], [39]) differ from that
of developers’ regarding whether such inconsistencies are
problematic. On one hand, whether an instance of IL is prob-
lematic or not can be subjective. This shows the importance
of including perspectives from multiple parties (e.g., user
studies or interviews) in future studies of software logging
practice. On the other hand, the discrepancy also indicates
the need of establishing a guidance for logging practice and
further even enforcing such standard. In short, none of the
IL instances that we manually identified are problematic
based on developers’ feedback.

Pattern 5: Duplicate logging statements in polymorphism
(DP).
Description. Classes in object-oriented languages are ex-
pected to share similar functionality if they inherit the same
parent class or if they implement the same interface (i.e.,
polymorphism). Since log messages record a higher level
abstraction of the program [14], we find that even though
there are no clones among a parent method and its over-
ridden methods, such methods may still contain duplicate
logging statements. Such duplicate logging statements may
cause maintenance overhead. For example, when develop-
ers update one log message, they may forget to update the
log message in all the other sibling classes. Inconsistent log
messages may cause problems during log analysis [32], [48]–
[50].
Example. In Table 2, the two classes (PowerShellFencer
and ShellCommandFencer) in Hadoop both extend the
same parent class, implement the same interface, and share
similar behaviors. The inherited methods in the two classes
have identical log message. However, as the system evolves,
developers may not always remember to keep the log mes-
sages consistent, which may cause problems during system



7

debugging, understanding, and analysis.
Code smell instances. We find that all the 163 instances
of DP are potentially problematic that may be fixed by
refactoring. In most of the instances, the parent class is an
abstract class, and the duplicate logging statements exist in
the overridden methods of the subclasses. We also find that
in most cases, the overridden methods in the subclasses are
very similar with minor differences (e.g., to provide some
specialized functionality), which may be the reason that
developers use duplicate logging statements.
Developers’ feedback. Developers agree that DP is asso-
ciated with logging code smells and specific refactoring
techniques are needed. One developer comments that:
“You want to care about the logging part of your code base in the
same way as you do for business-logic code (one can argue it is
part of it), so salute DRY (do-not-repeat-yourself).”

Based on developers’ feedback, DP is viewed more as
technical debts [51], while resolving DP often requires sys-
tematic refactoring. However, to the best of our knowledge,
current Java logging frameworks, such as SLF4J and Log4j
2, do not support the use of polymorphism in logging
statements. Thus, we find that developers are more reluctant
to fix DP. The way to resolve DP is to ensure that the log
message of the parent class can be reused by the subclasses,
e.g., storing the log message in a static constant variable.
We received similar suggestions from developers on how to
refactor DP, such as “adding a method in the parent class that
generates the error text for that case: logger.error(notAccessible(
field.getName()));”, or “creat[ing] your own Exception classes
and put message details in them”. We find that without sup-
ports from logging frameworks, even though developers
acknowledged the issue of DP, they do not want to manually
fix the code smells. Similar to some code smells studied
in prior research [52], [53], developers may be reluctant
to fix DP due to additional maintenance overheads but
limited supports (i.e., need to manually fix hundreds of DP
instances). Therefore, we did not report all the instances
of DP and refer to the instances of DP as technical debts,
instead of problematic instances, in the rest of the paper. In
short, logging frameworks should provide better support to
developers in creating log “templates” that can be reused in
different places in the code.

Discussions on duplicate logging statements that do not
belong to one of the uncovered smells. In this paper,
we focus on studying the problematic patterns of dupli-
cate logging statements. However, we do not consider all
duplicate logging statements as bad logging practice. For
other duplicate logging statements that do not belong to the
identified smells, we did not find evidence that they may
cause confusion when analyzing logs. In most of the cases,
the log message may be similar by coincidence (e.g., the
log messages are used to record a certain type of exception
message and stack trace). In some cases, we found that
developers intentionally write duplicate logging statements
with comments explaining the reasons. For example, some
developers mentioned in the comment that the code snippet
is copied from another class, and said the code should
be refactored in the future. In some other cases, develop-
ers described the intention of the two duplicate logging
statements. Although the static messages are identical, the

comments are different, which shows that duplicate log-
ging statements could have different intentions in different
places. In such cases, duplicate logging statements may
assist machine-learning based approaches to suggest where-
to-log.

We manually uncovered five patterns of duplicate log-
ging code smells. In total, our manual study helped
developers fix 62 problematic duplicate logging code
smells in the studied systems.

4 DLFINDER: AUTOMATICALLY DETECTING
PROBLEMATIC DUPLICATE LOGGING CODE
SMELLS

Section 3 uncovers five patterns of duplicate logging code
smells, and provides guidance in identifying problematic log-
ging code smells. To help developers detect such problem-
atic code smells and improve logging practices, we propose
an automated approach, specifically a static analysis tool,
called DLFinder. DLFinder uses abstract syntax tree (AST)
analysis, data flow analysis, and text analysis. Note that we
exclude the detection result of IL (i.e., inconsistent log level)
in this study, since based on the feedback from developers,
none of the IL instances are problematic. Below, we discuss
how DLFinder detects each of the four patterns of duplicate
logging code smell (i.e., IC, IE, LM, and DP).
Detecting inadequate information in catch blocks (IC).
DLFinder first locates the try-catch blocks that contain du-
plicate logging statements. Specifically, DLFinder finds the
catch blocks of the same try block that catch different types
of exceptions, and these catch blocks contain the same set
of duplicate logging statements. Then, DLFinder uses data
flow analysis to analyze whether the handled exceptions
in the catch blocks are logged (e.g., record the exception
message). DLFinder detects an instance of IC if none of the
logging statements in the catch blocks record either the stack
trace or the exception message.
Detecting inconsistent error-diagnostic information (IE).
DLFinder first identifies all the catch blocks that contain
duplicate logging statements. Then, for each catch block,
DLFinder uses data flow analysis to determine how the
exception is logged by analyzing the usage of the exception
variable in the logging statement. Namely, the logging state-
ment records 1) the entire stack trace, 2) only the exception
message, or 3) nothing at all. Then, DLFinder compares
how the exception variable is used/recorded in each of the
duplicate logging statements. DLFinder detects an instance
of IE if a set of duplicate logging statements that appear
in catch blocks has an inconsistent way of recording the
exception variables (e.g., the log in one catch block records
the entire stack trace, and the log in another catch block
records only the exception message, while the two catch
blocks handle the same type of exception). Note that for
each instance of IE, the multiple catch blocks with duplicate
logging statements in the same set may belong to different
try blocks. In addition, DLFinder decides if an instance of IE
can be excluded if it belongs to one of the three justifiable
cases (IE.1–IE.3) by checking the exception types, if the
duplicate logging statements are in the same catch block, and
if developers pass the exception variable to another method.



8

Detecting log message mismatch (LM). LM is about having
an incorrect method or class name in the log message (e.g.,
due to copy-and-paste). Hence, DLFinder analyzes the text
in both the log message and the class-method name (i.e.,
concatenation of class name and method name) to detect LM
by applying commonly used text analysis approaches [54].
DLFinder detects instances of LM using four steps: 1) For
each logging statement, DLFinder splits class-method name
into a set of words (i.e., name set) and splits log message
into a set of words (i.e., log set) by leveraging naming
conventions (e.g., camel cases) and converting the words to
lower cases. 2) DLFinder applies stemming on all the words
using Porter Stemmer [55]. 3) DLFinder removes stop words
in the log message. We find that there is a considerable
number of words that are generic across the log messages in
a system (e.g., on, with, and process). Hence, we obtain the
stop words by finding the top 50 most frequent words (our
studied systems has an average of 3,352 unique words in
the static text messages) across all log messages in each sys-
tem [56]. 4) For every logging statement, between the name
set (i.e., from the class-method name) and its associated log
set, DLFinder counts the number of common words shared
by both sets. Afterward, DLFinder detects an instance of LM
if the number of common words is inconsistent among the
duplicate logging statements in one set.

For the LM example shown in Table 2, the common
words shared by the first pair (i.e., method doScaleUp() and
its log) are “scale, up”, while the common word shared
by the second pair is “scale”. Hence, DLFinder detects an
LM instance due to this inconsistency. The rationale is that
the number of common words between the class-method
name and the associated logging statement is subject to
change if developers make copy-and-paste errors on logging
statements (e.g., copy the logging statement in doScaleUp() to
method doScaleDown()), but forget to update the log message
to match with the new method name “doScaleDown”. How-
ever, the number of common words will remain unchanged
(i.e., no inconsistency) if the logging statement (after being
pasted at a new location) is updated respectively.
Detecting duplicate logs in polymorphism (DP). DLFinder
generates an object inheritance graph when statically ana-
lyzing the Java code. For each overridden method, DLFinder
checks if there exist any duplicate logging statements in the
corresponding method of the sibling and the parent class.
If there exist such duplicate logging statements, DLFinder
detects an instance of DP. Note that, based on the feedback
that we received from developers (Section 3), we do not
expect developers to fix instances of DP. DP can be viewed
more as technical debts [51] and our goal is to propose
an approach to detect DP to raise the awareness from the
research community and developers regarding this issue.

5 CASE STUDY RESULTS
In this section, we conduct a case study to investigate the
prevalence of duplicate logging code smells and evaluate
DLFinder by answering three research questions.

RQ1: How well can DLFinder detect duplicate logging
code smells in the five manually studied systems?
Motivation. DLFinder was implemented based on the du-
plicate logging code smells uncovered from the manually

studied systems (i.e., IC, IE, LM, and DP). Since we obtain
the ground truth (i.e., all the duplicate logging code smell
instances) in these five systems from our manual study, the
goal of this RQ is to evaluate the detection accuracy of
DLFinder.
Approach. We applied DLFinder on the same versions of the
systems that we used in our manual study (Section 3). We
calculated the precision and recall of DLFinder in detecting
problematic instances for IC, IE, and LM, as well as the
technical debt instances for DP. Precision is the percent-
age of correctly detected instances among all the detected
instances, and recall is the percentage of problematic or
technical debt instances that DLFinder is able to detect.
Results and discussion. The first five rows of Table 4 show
the results of RQ1. For the patterns of IC, IE, and DP,
DLFinder detects all the problematic and technical debt
instances of duplicate logging code smells (100% in recall)
with a precision of 100%. For the LM pattern, DLFinder
achieves a recall of 85.4% (i.e., DLFinder detects 35/41
problematic LM instances). We manually investigate the six
instances of LM that DLFinder cannot detect. We find that
the problem is related to the various habits and coding
conventions that developers use when writing log messages.
For example, developers may write “mlockall” instead of
“mLockAll” (i.e., the camelcase naming convention), which
increases the challenge of log message analysis. Hence, the
text in the log message cannot be matched with the method
name when we split the word using camel cases. The
precision of detecting problematic LM instances is modest
because, in many false positive cases, the log messages
and class-method names are at different levels of abstrac-
tion: The log message describes a local code block while
the class-method name describes the functionality of the
entire method. For example, encodePublicKey() and encode-
PrivateKey() both contain the duplicate logging statement
“Unable to create KeyFactory”. The duplicate logging state-
ment describes a local code block that is related to the usage
of the KeyFactory class, which is different from the major
functionalities of the two methods (i.e., as expressed by
their class-method names). Nevertheless, DLFinder detects
the LM instances with a high recall, and developers could
quickly go through the results to identify the true positives
(it took the first two authors less than 10 minutes on average
to go through the LM result of each system to identify true
positives).

To further evaluate our detection approach for LM, we
compare our detection results with a baseline. We use ran-
dom prediction algorithm as our baseline, which is com-
monly used as the baseline in prior studies [57]–[59]. The
random prediction algorithm predicts the label of an item
(i.e., whether a set of duplicate logging statements belong
to LM) based on the distribution of the training data. For
each system, we use our manually labeled results (which
are discussed and verified in the previous sections) as the
training data. Note that we only compare the detection
results of LM with the baseline. The reason is that pattern
IC, IE, and DP are relatively independent and well-defined,
unlike LM which depends on the semantics of the logging
statement and its surrounding code. We repeat the random
prediction 30 times (as suggested by previous studies [60],
[61]) for each system to reduce the biases. Finally, we report



9

TABLE 4
The results of DLFinder in RQ1 and RQ2.

Research IC IE LM DP
questions Pro. C.Det. Det. Pro. C.Det. Det. Pro. C.Det. Det. Tech. C.Det. Det.

RQ1: How well can
DLFinder detect duplicate
logging code smells in
the five manually studied
systems?

Cassandra 1 1 1 0 0 0 0 0 4 2 2 2
CloudStack 8 8 8 4 4 4 27 24 186 107 107 107
Elasticsearch 1 1 1 0 0 0 1 0 15 3 3 3
Flink 0 0 0 2 2 2 4 4 41 24 24 24
Hadoop 5 5 5 0 0 0 9 7 44 27 27 27
Total of RQ1 15 15 15 6 6 6 41 35 290 163 163 163
Precision / Recall 100% / 100% 100% / 100% 12.1% / 85.4% 100% / 100%

RQ2: How well can
DLFinder detect duplicate
logging code smells in the
additional systems?

Camel 1 1 1 0 0 0 14 10 95 29 29 29
Kafka 0 0 0 0 0 0 3 3 15 14 14 14
Wicket 1 1 1 0 0 0 1 1 4 1 1 1
Total of RQ2 2 2 2 0 0 0 18 14 114 44 44 44
Precision / Recall 100% / 100% - / - 12.3% / 77.8% 100% / 100%

Total 17 17 17 6 6 6 59 49 404 207 207 207
Pro.: number of problematic instances as the ground-truth, Tech.: number of technical debt instances for DP, C.Det.: the combined number of

problematic or technical debt instances correctly detected by DLFinder, Det.: number of instances detected by DLFinder.

the average precision and recall that are computed based on
the 30 times of iterations. Figure 3 shows how the precision
and recall of our approach compared to that of the baseline.
The average precision and recall for the baseline are 3.1%
and 3.0%, respectively, for the five studied systems. Our
detection approach achieves a precision and recall of 12.1%
and 85.4%, respectively. In short, our approach is better than
the baseline and is able to have a very high recall in the five
manually studied systems.

RQ2: How well can DLFinder detect duplicate logging
code smells in the additional systems?
Motivation. The goal of this RQ is to study whether the
uncovered patterns of duplicate logging code smells are
generalizable to other systems.
Approach. We applied DLFinder to three additional systems
that are not included in the manual study in Section 3:
Camel, Kafka, and Wicket, which are all large-scale open
source Java systems. Details of the systems are presented in
Table 1. Similar to our manual study, the first two authors
of this paper manually collect the problematic and technical
debt duplicate logging code smells in the additional sys-
tems, i.e., the ground-truth used for calculating the precision
and recall of DLFinder. Note that the collected ground-truth
of the additional systems is only used in this evaluation, but
not in designing the patterns in DLFinder (There are also no
new patterns found in this process).
Results and discussion. The second half of Table 4 shows
the results of the additional systems. In total, we found
20 problematic duplicate logging code code smell instances
(DLFinder detects 16) in these systems and all of them
are reported and fixed. Compared to the five systems in
RQ1, DLFinder has similar precision and recall values in
the additional systems. DLFinder detects DP instances with
100% in recall and precision; however, developers are re-
luctant to fix them due to limited support from logging
frameworks. Similar to our observation in RQ1, we find
that DLFinder cannot detect some LM instances due to the
various habits and coding conventions when developers
write log messages. We also compare our LM detection
results with the baseline mentioned in RQ1 using the same
approach. The average precision and recall for DLFinder are
12.3% and 77.8%, respectively, which are considerably better
than the precision (2.2%) and recall (2.1%) of the baseline.
In summary, apart from the manually studied systems in
RQ1, DLFinder also achieves noticeably better precision and

TABLE 5
The results of DLFinder in RQ3.

Releases IC IE LM DP
Org., New. Gap.

Cassandra 3.11.1, 3.11.3 294 0 0 0 1
CloudStack 4.9.3, 4.11.1 297 5 0 2 0
Elasticsearch 6.0.0, 6.1.3 77 0 0 0 0
Flink 1.7.1, 1.9.1 301 0 0 0 1
Hadoop 3.0.0, 3.0.3 208 0 0 2 21

Total - - 5 0 4 23
Gap.: duration of time in days between the original (Org.) and the

newer release (New.).

recall than the baseline and is able to have a reasonably high
recall in the additional systems.

RQ3: Are new duplicate logging code smell instances
introduced over time?
Motivation. In this RQ, we investigate if new instances
of duplicate logging code smell are introduced during the
evolution of systems. An automated detection tool may then
help developers detect such problems overtime.
Approach. We applied DLFinder on the latest versions of
the five studied systems, i.e., Hadoop, CloudStack, Elastic-
search, Cassandra and Flink, and compare the results with
the ones on previous versions. The gaps of days between the
manually studied versions and the new versions vary from
77 days to 301 days.
Results and discussion. Table 5 shows that new instances
of duplicate logging code smells are introduced during
software evolution. All the detected problematic instances
(i.e., instances of IC, IE, and LM) are reported and fixed.
As mentioned in Section 3 and 4, our goal of detecting
DP is to show developers the logging technical debt in
their systems. The number of commits for the studied time
periods are: 282 commits for Cassandra, 1,097 commits
for Cloud Stack, 1,036 for Elasticsearch, 485 commits for
Hadoop, and 3,036 commits for Flink. These 9 instances that
we detected and fixed were introduced during the studied
period. For the systems that we did not find new instances
of IC, IE, and LM, the number of commits is either small
(e.g., 282 commits for Cassandra) or have fewer log lines
(e.g., Elasticsearch has only 1.7K log lines). However, we
still find new instances of DP in Cassandra and Flink. In
short, we found that duplicate logging code smells are still
introduced over time, and an automated approach such as
DLFinder can help developers avoid duplicate logging code



10

Systems of RQ1 Systems of RQ2

P
re

ci
si

on
 (

%
)

0
5

10
15

20

DLFinder
Baseline

12.1%

3.1%

12.3%

2.2%

(a) Precision

Systems of RQ1 Systems of RQ2

R
ec

al
l (

%
)

0
20

40
60

80
10

0

DLFinder
Baseline85.4%

3.0% 2.1%

77.8%

(b) Recall

Fig. 3. The precision (a) and recall (b) of DLFinder detecting LM on
the systems of RQ1 and RQ2 respectively, compared with the baseline
(random prediction).

smells as the system evolves.

The duplicate logging code smells exist in both manu-
ally studied and additional systems. In total, DLFinder
is able to detect 81 out of 91 problematic duplicate
logging code smell instances (combining the results of
RQ1, RQ2, and RQ3 for pattern IC, IE, and LM). We
also find that new instances of logging code smells are
introduced as systems evolve.

6 RQ4: WHAT ARE THE RELATIONSHIPS BE-
TWEEN PROBLEMATIC DUPLICATE LOGGING CODE
SMELLS AND CODE CLONES?

Motivation. Code clone or duplicate code is considered
a bad programming practice and an indication of deeper
maintenance problems [62]. Prior studies often focus on
studying clones in source code and understanding their
potential impact. However, there may also be other negative
side effects that are related to code clones. For example,
logging statements can also be copied along with other
code since cloning is often performed hastily without much
attention on the context [35]. In the previous RQs, we focus
on studying problematic and technical debt instances of
duplicate logging code smells (i.e., IC, IE, LM, and DP).
In this section, we further investigate the potential causes
of these instances by examining their relationship with
code clones (we refer both the problematic and technical
debt instances as problematic instances in this section for
simplification). Our findings may provide researchers and
practitioners with insights of other possible effects of code
clones, other ways to further improve logging practices, and
inspire future code clone studies.
Our approach of mapping code clones to problematic
instances of duplicate logging code smells. Due to the
large number of duplicate logging statements in the studied
systems (Appendix A also studies the relationship between
general duplicate logging statements and code clone), we
first leverage automated clone detection tools to study
whether these instances (i.e., DP and fixed instances of
IC, IE, and LM) reside in cloned code. In particular, we
use NiCad [36] as our clone detection tool. NiCad uses
hybrid language-sensitive text comparison to detect clones.
We choose NiCad because, as found in prior studies [36],

[63], it has high precision (95%) and recall (96%) when
detecting near-miss clones (i.e., code clones that are very
similar but not exactly the same) and is actively maintained
(latest release was in July 2020). Note that, we find NiCad’s
precision to be 96.8% in our manual verification, which is
consistent with the results from prior studies (more details
in Appendix A). Note that, we find NiCad’s precision to be
96.8% in our manual verification, which is consistent with
the results from prior studies (more details in Appendix A).

In NiCad, the source code units of comparison are
determined by partitioning the source code into different
granularities. The structural granularity of the source code
units could be set as the method-level or block-level (e.g.,
the blocks of catch, if, for, or method, etc). In our study,
we set the level of granularity to block-level and use the
default configuration (i.e., similarity threshold is 70% and
the minimum lines of a comparable code block is 10), which
is suggested by prior studies indicating this configuration
could achieve remarkably better results in terms of preci-
sion and recall [36], [64], [65]. Block-level provides finer-
grained information, since logging statements are usually
contained in code blocks for debugging or error diagnostic
purposes [3]. Note that if the block is nested, the inner block
is listed twice: once inside its parent block and once on its
own. Hence, all blocks with lines of code above the default
threshold will be compared for detecting clones. We run
NiCad on the eight studied open source systems that are
mentioned in Section 5. We then analyze the clone detection
results and match the location of the clones with that of
problematic instances. If two or more cloned code snippets
contain the same set of instances, we consider the instances
are related to the clone.

To reduce the effect of false negatives, we also manually
study the code of all the remaining instances that are not
identified as clones by NiCad. We manually classify the
clones into the three following categories:

Clones: The code around the logging statements is more
than 10 lines of code (same as the threshold of the clone
detection tool). The code is exactly the same, or only with
differences in identifier names (i.e., Type 1 and Type 2
clones [66]) but not detected by the clone detection tool.

Micro-clones: The code around the logging statements is
very similar but is less than the minimum size of regular
code clones [67]. Prior studies show that micro-clones are
also important for consistent updates and they are more
difficult to detect due to their small size [67]–[69]. However,
the effect of micro-clones on code maintenance and quality
is similar to regular code clones [70], [71]. Micro-clones
should not be ignored when making decisions of clone
management.

Non-clones: We classify other situations as non-clones.
Result of code clone analysis on problematic instances.
We find that 240 out of 289 (83%) of the problematic instances
of duplicate logging code smells reside in cloned code snippets.
Table 6 presents the results of our code clone analysis. Clone
(A) refers to the number of problematic instances that are
detected by NiCad as in code clones. Clone (M) refers to the
number of problematic instances that are manually found
as in code clones. Micro. refers to the number of problematic
instances that are manually found as in Micro clones (i.e.,
less than 10 lines of code). In general, our findings show that



11

TABLE 6
The results of code clone analysis on problematic instances and code clones.

IC IE LM DP
Clone (A) Clone (M) Micro. Clone/Total Clone (A) Clone (M) Micro. Clone/Total Clone (A) Clone (M) Micro. Clone/Total Clone (A) Clone (M) Micro. Clone/Total

Cassandra 0 0 0 0/1 0 0 0 0/0 0 0 0 0/0 2 0 0 2/2
CloudStack 5 0 3 8/8 4 0 0 4/4 20 1 5 26/27 60 12 9 81/107

Elasticsearch 0 0 0 0/1 0 0 0 0/0 0 0 1 1/1 0 1 0 1/3
Flink 0 0 0 0/0 1 0 1 2/2 2 0 2 4/4 19 0 3 22/24

Hadoop 1 0 2 3/5 0 0 0 0/0 0 3 3 6/9 5 14 6 25/27
Camel 0 0 1 1/1 0 0 0 0/0 6 2 6 14/14 22 2 4 28/29
Kafka 0 0 0 0/0 0 0 0 0/0 1 0 1 2/3 3 3 2 8/14
Wicket 0 0 0 0/1 0 0 0 0/0 0 1 0 1/1 1 0 0 1/1
Total 6 0 6 12/17 5 0 1 6/6 29 7 18 54/59 112 32 24 168/207

Clone (A): number of problematic duplicate logging code smell instances that are detected as clones by NiCad, Clone (M): number of problematic
duplicate logging code smell instances that are identified as clones by manual study, Micro.: number of problematic duplicate logging code smell

instances that are identified as Micro clones by manual study.

these problematic instances are potentially caused by code
clones. In other words, in addition to the finding from
prior code clone studies, which indicates that code clones
may introduce subtle program errors [72], [73], we find
that code clones may also result in bad logging practices
that could increase maintenance difficulties. Future studies
should further investigate the negative effect of code clones
on the quality of logging statements and provide a compre-
hensive logging guideline.

We find that 64.2% (88/137) of the problematic instances of
duplicate logging code smells that are labeled as Non-clones by the
automated code clone detection tool are actually from cloned code
snippets. Among them, more than half (55.7%, 49/88) reside in
micro clones, which often do not get enough attention in the pro-
cess of code clone management. As mentioned in the approach
section of this RQ, to overcome potential false negatives, we
manually study all the 137 problematic instances that are
labeled as Non-clones by NiCad. We classify each instance
that we study into three categories:

Category 1: Code clones reside in part of a large code block.
Since the structural granularity level of the source code
units is block-level (i.e., the minimal comparable source
code unit of the tool is a block), the similarity of the code is
computed by comparing blocks. However, developers may
copy a small part of the code into a large code block. In such
cases, the similarity would be low between two different
large code blocks which only have a few lines of cloned
code.

Category 2: Code clones reside in code with very similar
semantics but have minor differences. The surrounding code of
duplicate logging statements share highly similar semantics
(i.e., implement a similar functionality), but have minor
differences (e.g., additions, deletions, or partial modification
on existing lines). Such scattered modifications might reduce
the similarity between the code structures, and thus, result
in miss detection [36], [65]. For example, there is a code
block in FTPConsumer of Camel which does a series of
operations based on the file transfer protocol (FTP). Due to
the similarity between FTP and secured file transfer protocol
(SFTP), Camel developers copied the code block and made
modifications (e.g., change class and method names) to the
all the places where SFTP is needed (e.g., SFTPConsumer).
Therefore, clone detection tools may fail to detect this kind
of cloned code blocks as due to minor yet scattered changes.

Category 3: Short methods/blocks. The logging statements
reside in very short methods or code blocks with only a few
lines of code. For example, there is a method in CloudStack
named verifyServicesCombination() containing only six lines

of code and duplicately locates in three different classes. The
method verifies the connectivity of services, and generates a
warning-level log if it fails the verification. Clone detection
tool fails to detect this category of cases due to their small
size compared to regular methods.
IC & IE: 30% (7/23) of the IC and IE instances in cloned code are
related to micro-clones. Since both of IC and IE reside in catch
blocks, which usually contain only a few lines of code, we
discuss these two duplicate logging code smells together.
As shown in Table 6, , 7 (6 IC + 1 IE) out of 23 (17 IC + 6
IE) instances are labeled as Micro-clones, and 11 instances
are identified as clones by the clone detection tool. The
remaining five instances are labeled as Non-clones, since they
are single logging statement thrown with multiple types
of exceptions (e.g., catch (Exception1 | Exception2 e)). We
find that all of the seven Micro-clones instances belong to
Category 1 (i.e., short code snippets within a large code
block). The reason might be that these logging statements
all reside in catch blocks, which are usually very short. Thus,
although the code in these short code blocks are identical or
highly similar, they are not long enough to be considered as
comparable code blocks by the clone detection tool.
LM: 25/54 (46%) of the LM instances in cloned code cannot be de-
tected by automated clone detection tools. 92% (54/59) of LM are
related code clones. As shown in Table 6, 36 out of 59 instances
are labeled as Clones (29 instances by tool + 7 instances by
manual study), 18 out of 59 instances are labeled as Micro-
clones, and the remaining 5 instances are labeled as Non-
clones. For the seven instances that are identified as Clones
by manual study, they all belong to Category 2 (i.e., they
share highly similar semantics, but have minor differences).
The reason might be that developers copy and paste a piece
of code along with the logging statement to another location,
and apply some modifications to the code. However, devel-
opers forgot to change the log message. Similarly, for the five
instances that are labeled as Non-clones, we find that even
though the code is syntactically different, the log messages
do not reflect the associated method. For the 18 Micro-clones
instances, 11 out of 18 instances belong to Category 3 (short
methods), and the remaining 7 are Category 2 (short code
snippets within a larger code block). As confirmed by the
developers (in Section 3), these LM instances are related to
logging statements being copied from other places in the
code without the needed modification (e.g., updating the
method name in the log).

Our manual analysis on LM instances provides insights
on possible maintenance problems that are related to the
modification and evolution of cloned code. Moreover, 92%



12

of the LM instances are related to code clones. Future studies
may further investigate the inconsistencies in the source
code and other software artifacts (e.g., logs or comments)
that are caused by code clone evolution.
DP: 81% (168/207) of the DP instances are either Clones or
Micro-clones, which shows that developers may often copy code
along with the logging statements across sibling classes. In total,
144 out of 207 DP instances are labeled as Clones (112
by tool + 32 by manual study), 24 are labeled as Micro-
clones, and the remaining 39 instances are Non-clones. For
the 32 instances that are labeled as Clones by manual study,
16 instances are Category 1 (part of a large code block),
the remaining 16 instances are Category 2 (very similar
semantics with minor differences). For the 24 Micro-clones
instances, 11 instances belong to Category 3 (short methods),
and the remaining 13 are categorized as Category 1 (short
code snippets within a larger code block). Combined with
the results from the clone detection tool, 81% (112 detected
by the tool + 32 Clones + 24 Micro-clones identified by
manual study, out of 207 total instances) of the DP instances
are related to code clones. One possible reason that many
DP instances are related to code clone is that DP is related to
inheritance. Classes that inherit from the same parent class
may share certain implementation details. Nevertheless, due
to the similarity of the code, developers should consider up-
dating the log messages to distinguish the executed methods
during production to assist debugging runtime errors.

For all of the remaining problematic instances (49/289)
that are not classified as clones by the automated tool and
manual analysis, they mostly reside in very short code
blocks (e.g., only 1∼3 lines of code). Even though these
code blocks may be similar or even identical, we cannot tell
whether they are clones or not. It is possible that developers
implemented such similar code by coincidence, or the code
was copied from other places and are then modified (but
forgot to modify the log-related code).
Implication and highlights of our code clone analysis. Our
finding shows that most of problematic instances of dupli-
cate logging code smells are indeed related to code clones,
and many of which cannot be easily detected by state-of-
the-art clone detection tools. Our finding shows additional
maintenance challenges that may be introduced by code
clones – maintaining logging statements and understanding
the runtime behaviour of system execution. Hence, future
code clone detection studies should consider other possible
side effects of code clones in addition to code maintenance
and refactoring overheads. Future studies may also consider
integrating different information in the software artifacts
(e.g., duplicate logging statements or comments) to further
improve clone detection results.

83% of the problematic instances of duplicate logging
code smells (240 out of 289 instances, combining the
results of tool detection and manual study) are related
to code clones. Our finding further shows the potential
negative effect of code clones on system maintenance.
Moreover, 17% of the instances reside in short code
blocks, which might be difficult to detect by using
existing code clone detection tools.

Discussion: the potential of using code clone detection

tool to assist in finding problematic instances of duplicate
logging code smells. In the previous section, we found that
most of the problematic instances of duplicate logging code
smells (83%) are related to code clones. Therefore, we use the
results of our code clone analysis to compare with and/or
assist our detection approach of LM. We focus on studying
LM for two reasons. First, we found that 92% (54/59) of the
LM instances are related to code clones. Second, unlike other
patterns that have a detection accuracy of 100%, our current
detection approach for LM analyzes textual similarity of the
logging statement and its surrounding code, which has a
lower precision and recall. Using clone detection results may
further help improve our detection accuracy.

We first use the clone detection result as a baseline and
compare the results with the detection approach imple-
mented in DLFinder. If two duplicate logging statements
reside in cloned code, we consider them as a possible
instance of LM. Overall, the average precision and recall of
using clone detection result are 3.7% and 53.7%, respectively,
in the studied systems in RQ1. The average precision and
recall in the additional systems in RQ2 are 1.5% and 38.9%,
respectively. Compared to using clone detection result as
a baseline, our approach has a better precision and recall
(around 12% in precision and 80% in recall). However,
among the 10 LM instances that cannot be detected using
our approach, four of them are detected by this baseline ap-
proach. After manual investigation on these four instances,
we found the log message describes a local code block while
the class-method name describes the functionality of the
entire method. Hence, in such cases, using clone detection
results may be more effective in detecting LM.

Inspired by the analysis result, we then study if clone
detection result can assist DLFinder in finding LM. We use
the automated clone detection results from NiCad to filter
the LM instances that are detected by DLFinder. Namely,
DLFinder only reports that a set of duplicate logging state-
ments is a potential LM instance if they reside in cloned
code. We find that, after using clone detection results to filter
out potential false positives, the average precision and recall
for the eight studied systems are 17.7% and 42.4%, respec-
tively. Compared to DLFinder’s detection result (Table 4),
the precision increases by around 5% but the recall decreases
by around 40%. The reason may be that many problematic
LM instances reside in code clones that are difficult to detect
by clone detection tool (e.g., micro clones). As shown in
Table 6, NiCad only detects 29/54 of the LM instances that
reside in cloned code. As we discussed in Section 5, we
believe that recall is more important when detecting LM,
since we found the manual effort of evaluating LM instances
to be small (i.e. within a few minutes). Our findings also
shed light on balancing the precision and recall of detecting
duplicate logging code smells. Future studies may consider
further improving code clone detection techniques to detect
code smells that are related to logging statements.

7 RQ5: WHAT ARE THE RELATIONSHIPS BE-
TWEEN DUPLICATE LOGGING STATEMENTS AND
CODE CLONES?

Motivation. In Section 6, we investigate the relationship
between code clones and problematic instances of duplicate log-



13

ging code smells. As discussed in Section 3, duplicate logging
code smells are duplicate logging statements with specific
patterns that may be indications of logging problems. In
this section, we further investigate the relationship between
duplicate logging statements and code clones. We also study
the potential impact of duplicate logging statements on
detecting code clones.

Approach. Similar to Section 6, we use both an automated
and a manual approach to study the relationship between
code clones and duplicate logging statements. We first
leverage NiCad to automatically detect clones. Although
we found that NiCad has a great precision (i.e., 96.8%, as
shown in Appendix A), there may still exist false negatives
(i.e., the duplicate logging statements are code clones, but
are missed by the tool). Therefore, we manually investigate
a statistical sample of duplicate logging statements, which
reside in code snippets that are classified by NiCad as Non-
clones to study the false negative rate.
Results of automated code clone analysis on duplicate
logging statements. We find that a considerable number of
duplicate logging statements (43.7% on average) reside in cloned
code snippets. Table 7 presents the results of our code clone
analysis. DupSet refers to the total sets of duplicate logging
statements (a set contains two or more logging statements
with the same text message). CloneSet refers to the subset
of duplicate logging statement sets (DupSet) that are from
cloned code snippets. The percentage number is the propor-
tion of CloneSet out of DupSet. Finally, Avg. Sim. refers to
the average code clone similarity score among the cloned
code snippets. As shown in Table 7, 11.5% to 51.1% sets
of duplicate logging statements are from the cloned code
snippets in the studied systems. Overall, 1,042 out of 2,382
(43.7%) sets of duplicate logging statements are related to
code clones (with an average 80% similarity score).

Our finding shows that a considerable number of du-
plicate logging statements are related to code clones, and
developers may not change the log messages when they
copy a piece of code to another location. However, due to the
importance of logging for understanding system runtime
behaviour [1], [38], [74], developers should avoid directly
copying logging statements. Developers should consider
modifying the log messages (e.g., to include the class name,
modify the message to reflect code changes, or record new
important dynamic variables) to assist debugging and work-
load understanding.
Results of manual code clone analysis on duplicate log-
ging statements. We find that more than 50% of the sampled
duplicate logging statements reside in cloned code snippets that
are difficult to detect using automated code clone detection tools.
In particular, 24.5% of the manually studied duplicate logging
statements are related to code clones, and 26.2% are related
to micro-clones. In total, we randomly sample 298 sets of
duplicate logging statements to achieve a confidence of 95%
and a confidence interval of 5%. For each set of the sampled
duplicate logging statements, we manually classify them
into three types: Clone (i.e., but not detected by code clone
detection tools), Micro-clone (i.e., code blocks with less than
10 lines of code), and Non-clone.

Table 8 presents the results of our manual study. Overall,
73 out of the 298 (24.5%) manually-studied sets of duplicate

TABLE 7
Automated code clone analysis results on duplicate logging statements.

DupSet CloneSet Avg. Sim.

Cassandra 46 14 (30.4%) 79.7
CloudStack 865 442 (51.1%) 80.3
Elasticsearch 40 17 (42.5%) 72.2
Flink 203 92 (45.3%) 78.8
Hadoop 217 25 (11.5%) 76
Camel 886 421 (47.5%) 80.7
Kafka 104 23 (22.1%) 75.4
Wicket 21 8 (38.1%) 83.1

Overall 2,382 1,042 (43.7%) 80.0

DupSet: Total sets of duplicate logging statements, CloneSet: Sets of
duplicate logging statements that are from cloned code snippets, Avg.

Sim.: Average similarity of the cloned code snippets.

TABLE 8
Manual study results on the recall of clone detection tool on duplicate

logging statements. Both the Clones and Micro-clones are labeled
manually and they are not detected by the clone detection tool.

Clones Micro-clones Non-clones Total

Cassandra 1 3 3 7
CloudStack 22 26 46 94
Elasticsearch 1 1 3 5
Flink 5 4 16 25
Hadoop 12 6 25 43
Camel 28 30 45 103
Kafka 3 7 8 18
Wicket 1 1 1 3

Total 73 78 147 298

logging statements are labeled as Clones. 78 out of 298
(26.2%) sets are labeled as Micro-clones. The remaining 147
out of 298 (49.3%) sets are labeled as Non-clones. For 42 out of
the 73 cases of Clones, and 32 out of 78 cases of Micro-clones,
we find that developers often only copy and paste part of
the code into another large code block (Category 1 discussed
in Section 6). Hence, only small parts of large code blocks
are similar, which reduces the similarity score. For 53 out
of the 73 cases that are manually identified as Clones, they
reside in code with very similar semantics but have minor
differences (Category 2). Note that some cases belong to
multiple categories. For 46 out of 78 cases they are classified
as Micro-clones, which reside in very short methods with
only a few lines of code (Category 3).

In summary, we find that more than half of the duplicate
logging statements reside in cloned code snippets. Our
manual study also highlights that many duplicate logging
statements reside in cloned code that may be difficult to
detect by clone detection tools.
Discussion: The Potential Impact of Duplicate Logging
Statements on Detecting Code Clones. In this RQ, we find
that a noticeable number of duplicate logging statements
reside in cloned code snippets. We further investigate the
impact of duplicate logging statements on the detection of
code clones, namely, whether considering duplicate logging
statements helps detect code clones. Specifically, for each
set of CloneSet presented in Table 7, we first remove the
duplicate logging statements from the related code snippets.
We then re-examine how many code snippets related to
prior DupSet are still identified as cloned code snippets and
how many are not, by using NiCad.

Table 9 shows the results of our experiments on in-
vestigating the impact of duplicate logging statements on
detecting code clones. CloneSet refers to the sets of cloned
code snippets with duplicate logging statements. CloneSet-



14

TABLE 9
The results of investigating the impact of duplicate logging statements

on detecting code clones.

CloneSet CloneSet-NDL CloneSet-Reduced Per. Reduced

Cassandra 14 10 4 28.6%
CloudStack 442 329 113 25.6%
Elasticsearch 17 9 8 47.1%
Flink 92 64 28 30.4%
Hadoop 25 16 9 36.0%
Camel 421 299 122 29.0%
Kafka 23 13 10 43.5%
Wicket 8 6 2 25.0%

Total 1042 746 296 28.4%

NDL refers to the sets of cloned code snippets after re-
moving the related duplicate logging statements. CloneSet-
Reduced represents the number of sets reduced by compar-
ing CloneSet-DL with CloneSet-NDL. Per. Reduced shows
the percentage of CloneSet-Reduced given CloneSet-DL.
On average, 28.4% CloneSet are not detected by NiCad
as cloned code snippets after removing duplicate logging
statements. Specifically for each studied system, the reduc-
tion ranges from 25.0% in Wicket to around a 47.1% in
Elasticsearch.

We then manually investigate the code snippets that
are not detected as cloned code snippets after removing
duplicate logging statements (i.e., CloneSet-Reduced). We
find two potential reasons that the clone detection tool could
not detect them as cloned code snippets. 1) Reduced total lines
of similar code after removing duplicate logging statements: The
logging statements usually span across one to three, and
sometimes even more, lines of code. However, these lines
of code in the duplicate logging statements are the main
part of the clones. After removing the duplicate logging
statements, the total number of similar lines of code snippets
is too small for a clone detection tool to consider as clones. 2)
Reduced similarity after removing duplicate logging statements:
Duplicate logging statements have exactly the same log
message and are represented as Method Invocation nodes
in the Abstract Syntax Tree. Removing duplicate logging
statements will decrease the similarity of code snippets, both
syntactically and semantically. Hence, the similarity might
become smaller than the threshold of the clone detection
tool and the code snippets are not detected as clones.

In summary, we find that a large portion of the cloned
code snippets with duplicate logging statements (from
25.0% to 47.1%) are not detected as cloned code snippets
after removing the duplicate logging statements. The re-
sults show that duplicate logging statements have a non-
negligible impact on the detection of code clones. Future
code clone studies may consider the effect of logging code
in order to further improve the code clone detection tech-
niques.

More than half of the duplicate logging statements re-
side in cloned code snippets, and a large portion of them
reside in short code blocks which are difficult to detect
using existing code clone detection tools. We also find
that duplicate logging statements have a non-negligible
impact on helping the detection of code clones. Future
works may leverage duplicate logging statements to
further improve code clone detection tools.

8 THREATS TO VALIDITY

Construct validity. In this paper, we study duplicate logging
statements from a static point of view. There may be other
types of unclear log messages that are dynamically gener-
ated during system runtime. Using such dynamic informa-
tion can also be helpful in identifying unclear log messages.
However, the generated log messages are highly dependent
on the executed workloads (i.e., hard to achieve a high
recall). DLFinder statically identifies and improves dupli-
cate logging statements, is useful as it does not require any
run-time information. Future studies may consider studying
runtime-generated logs and further improve logging prac-
tices. We detect duplicate logging code smells by analyzing
the surrounding code of logging statements as their context.
Apart from that, the sequence of generated logs may also
provide context information (e.g., the relationship among
preceding logs and subsequent logs). However, for most of
the duplicate logging code smells discussed in this paper,
they are not directly related to the log sequences (e.g., the
patterns of IC and IE are related to the logging statements
and their surrounding catch blocks). Even though analyzing
the generated log sequences may provide more information,
the duplicate logging code smells can still cause challenges
and increase maintenance costs, as acknowledged by the
developers in the studied systems. Future study may con-
sider the execution path of logging statements as the context
information to further improve logging practice.

Internal validity. We conducted manual studies to uncover
the patterns of duplicate logging code smells, study their
potential impact and examine duplicate logging statements
that are not classified by the automated clone detection tool
as clones. Involving external logging experts may uncover
more patterns of logging statements or have different man-
ual study results. To mitigate the biases, two of the authors
examine the data independently. For most of the cases
the two authors reach an agreement. Any disagreement is
discussed until a consensus is reached. In order to reduce
the subjective bias from the authors, we have contacted
the developers to confirm the uncovered patterns and their
impact. When detecting LM instances, using different ap-
proaches to split the text into words may have different
results. We follow common text pre-processing techniques
to split the text by space and camel case [54]. We define
duplicate logging statements as two or more logging state-
ments that have the same static text message. We were able
to uncover five patterns of duplicate logging code smells
and detect many duplicate logging code smell instances.
However, logging statements with non-identical but similar
static texts may also cause problems to developers (e.g.,
when analyzing dynamically generated logs). Future studies
should consider different types of duplicate logging state-
ments (e.g., logs with similar text messages). We remove the
top 50 most frequent words when detecting LM, because
there is a considerable number of generic words across
different log messages. However, this might also introduce
false negatives. Future studies may consider applying more
advanced techniques to better detect the instances of LM.
There is a considerable number of code clone detection
tools proposed by prior studies [36], [75]–[79]. We use
NiCad [36] to detect code clone, as it has high precision



15

(95%), recall (96%) and outperforms the state-of-the-art code
clone detection tools [36], [63], [65] when detecting near-
miss clones, and is actively maintained (latest release was in
July 2020). We also manually examine the precision of Nicad
in Appendix A, where we find its precision to be 96.8% in
our manual verification, which is consistent with the results
from prior studies [63], [65].

External validity. We conducted our study on five large-
scale open source systems in different domains. We found
that our uncovered patterns and the corresponding prob-
lematic and justifiable cases are common among the studied
systems. However, our finding may not be generalizable to
other systems. Hence, we studied whether the uncovered
patterns exist in three other systems. We found that the
patterns of duplicate logging code smells also exist in these
systems and we did not find any new duplicate logging code
smell patterns in our manual verification. Our studied sys-
tems are all implemented in Java, so the results may not be
generalizable to systems in other programming languages.
Future studies should validate the generalizability of our
findings in systems in other programming languages.

9 RELATED WORK

Empirical studies on logging practices. There are several
studies on characterizing the logging practices in software
systems [3], [38], [80]. Yuan et al. [38] conducted a quanti-
tative characteristics study on log messages for large-scale
open source C/C++ systems. Chen et al. [80] replicated
the study by Yuan et al. [38] on Java open-source projects.
Both of their studies found that log message is crucial for
system understanding and maintenance. Fu et al. [3] studied
where developers in Microsoft add logging statements in
the code and summarized several typical logging strategies.
They found that developers often add logs to check the
returned value of a method. Different from prior studies, in
this paper, we focus on manually understanding duplicate
logging code smells. We also discuss potential approaches to
detect and fix these code smells based on different contexts
(i.e., surrounding code).

Improving logging practices. Zhao et al. [28] proposed
a tool that determines how to optimally place logging
statements given a performance overhead threshold. Zhu et
al. [25] provided a tool for suggesting log placement using
machine learning techniques. Yuan et al. [1] proposed an
approach that can automatically insert additional variables
into logging statements to enhance the error diagnostic
information. Chen et al. [31] concluded five categories of
logging anti-patterns from code changes, and implemented
a tool to detect the anti-patterns. Hassani et al. [32] identified
seven root-causes of the log-related issues from log-related
bug reports. Compared to prior studies, we study logging
code smells that may be caused by duplicate logs, with a
goal to help developers improve logging code. The logging
problems that we uncovered in this study are not discovered
by prior work. We conducted an extensive manual study
through obtaining a deep understanding on not only the
logging statements but also the surrounding code, whereas
prior studies usually only look at the problems that are
related to the logging statement itself.

Code smells and code clones. Code smells can be indi-
cations of bad design and implementation choices, which
may affect software systems’ maintainability [81]–[84], un-
derstandability [85], [86], and performance [87]. To mitigate
the impact of code smells, studies have been proposed
to detect code smells [88]–[92]. Duplicate code (or code
clones) is a kind of code smells which may be caused by
developers copying and pasting a piece of code from one
place to another [35], [73]. Such code clones may indicate
quality problems. There are many studies that focus on
studying the impact of code clones [93]–[95], and detecting
them [36], [75], [76]. In this paper, we study duplicate
logging code smells, which are not studied in prior duplicate
code studies. We also investigate the relationship between
duplicate logging statements and code clones. Some in-
stances of the problematic duplicate logging code smells in
our study might also be related to micro-clones (i.e., cloned
code snippets that are smaller than the minimum size of
the regular clones [67]). A small number of prior studies
investigate the characteristics and impact of micro-clones
in evolving software systems [67]–[71]. Specifically, micro-
clones may have similar tendencies of replicating severe
bugs as regular clones [70], [71]. However, the potential
impact of micro-clones on logging code are not studied in
these works. Our study provides insights for future studies
on the relationship between micro-clones and logging code.
The investigation on duplicate logging code smells and
duplicate logging statements may also help identify micro-
clones and further alleviate the impact of micro-clones on
software maintenance and evolution.

10 CONCLUSION

Duplicate logging statements may affect developers’ under-
standing of the system execution. In this paper, we study
over 4K duplicate logging statements in five large-scale
open source systems (Hadoop, CloudStack, Elasticsearch,
Cassandra and Flink). We uncover five patterns of duplicate
logging code smells. Further, we assess the impact of each
uncovered code smell and find not all are problematic and
need fixes. In particular, we find six justifiable cases where
the uncovered patterns of duplicate logging code smells
may not be problematic. We received confirmation from
developers on both the problematic and justifiable cases.
Combining our manual analysis and developers’ feedback,
we developed a static analysis tool, DLFinder, which auto-
matically detects problematic duplicate logging code smells.
We applied DLFinder on the five manually studied systems
and three additional systems. In total, we reported 91 prob-
lematic duplicate logging code smell instances in the eight
studied systems to developers and all of them are fixed.
DLFinder successfully detects 81 out of the 91 instances.
We further investigate the relationship between duplicate
logging statements and code clones, in order to provide
a more comprehensive understanding of duplicate logging
statements and duplicate logging code smells. We find that
most of the problematic instances of duplicate logging code
smells and almost half of the duplicate logging statements
reside in cloned code snippets. Among them, a large portion
reside in very short code blocks which might be difficult to
detect using existing code clone detection tools.



16

Our study highlights the importance of the context of
the logging code, i.e., the nature of logging code is highly
associated with both the structure and the functionality of
the surrounding code. Future studies should consider the
code context when providing guidance to logging practices,
more advanced logging libraries are needed to help devel-
opers improve logging practice and to avoid logging code
smells. Our findings also provide an initial evidence on
the prevalence of duplicate logging statements that reside
in cloned code snippets, and the potential impact of code
clones on logging practices. Future studies may also con-
sider integrating different information in the software arti-
facts (e.g., duplicate logging statements) to further improve
clone detection results.

REFERENCES

[1] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving
software diagnosability via log enhancement,” in Proceedings of the
sixteenth international conference on Architectural support for program-
ming languages and operating systems, ser. ASPLOS ’11, 2011, pp.
3–14.

[2] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’10, 2010, pp. 143–154.

[3] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and
T. Xie, “Where do developers log? an empirical study on logging
practices in industry,” in Proceedings of the 36th International Con-
ference on Software Engineering, ser. ICSE-SEIP ’14, 2014, pp. 24–33.

[4] Z. Li, “Towards providing automated supports to developers
on writing logging statements,” in ICSE ’20: 42nd International
Conference on Software Engineering, Companion Volume, 2020, pp.
198–201.

[5] A. R. Chen, T. P. Chen, and S. Wang, “Demystifying the challenges
and benefits of analyzing user-reported logs in bug reports,”
Empir. Softw. Eng., vol. 26, no. 1, p. 8, 2021.

[6] D. Cui, T. Liu, Y. Cai, Q. Zheng, Q. Feng, W. Jin, J. Guo, and Y. Qu,
“Investigating the impact of multiple dependency structures on
software defects,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, 2019, pp. 584–595.

[7] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log
parsing for large-scale log data analysis,” IEEE Trans. Dependable
Secur. Comput., vol. 15, no. 6, pp. 931–944, 2018.

[8] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 27th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2016. IEEE
Computer Society, pp. 207–218.

[9] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Analytics-driven load testing: An in-
dustrial experience report on load testing of large-scale systems,”
in Proceedings of the 39th International Conference on Software Engi-
neering, ser. ICSE-SEIP ’17, 2017, pp. 243–252.

[10] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proceedings of 24th
International Conference on Software Maintenance, ser. ICSM ’08,
2008, pp. 307–316.

[11] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution
logs,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE ’18’, 2018, pp. 305–316.

[12] J. Chen, W. Shang, A. E. Hassan, Y. Wang, and J. Lin, “An experi-
ence report of generating load tests using log-recovered workloads
at varying granularities of user behaviour,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, 2019, pp. 669–681.

[13] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz, “An
Industrial Case Study of Customizing Operational Profiles Using
Log Compression,” in Proceedings of the 30th international conference
on Software engineering, ser. ICSE ’08, 2008, pp. 713–723.

[14] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Under-
standing log lines using development knowledge,” in Proceedings
of the 2014 IEEE International Conference on Software Maintenance and
Evolution, ser. ICSME ’14, 2014, pp. 21–30.

[15] Y. Zeng, J. Chen, W. Shang, and T. P. Chen, “Studying the char-
acteristics of logging practices in mobile apps: a case study on
f-droid,” Empir. Softw. Eng., vol. 24, no. 6, pp. 3394–3434, 2019.

[16] N. Busany and S. Maoz, “Behavioral log analysis with statistical
guarantees,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16, 2016, pp. 877–887.

[17] H. Barringer, A. Groce, K. Havelund, and M. H. Smith, “Formal
analysis of log files,” JACIC, vol. 7, no. 11, pp. 365–390, 2010.

[18] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora,
“Cacheoptimizer: Helping developers configure caching frame-
works for hibernate-based database-centric web applications,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016, 2016, pp. 666–
677.

[19] K. Yao, G. B. d. Pádua, W. Shang, S. Sporea, A. Toma, and S. Sajedi,
“Log4perf: Suggesting logging locations for web-based systems’
performance monitoring,” in Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18,
2018, pp. 21–30.

[20] Z. Ding, J. Chen, and W. Shang, “Towards the use of the readily
available tests from the release pipeline as performance tests: are
we there yet?” in ICSE ’20: 42nd International Conference on Software
Engineering. ACM, 2020, pp. 1435–1446.

[21] K. Yao, H. Li, W. Shang, and A. E. Hassan, “A study of the
performance of general compressors on log files,” Empir. Softw.
Eng., vol. 25, no. 5, pp. 3043–3085, 2020.

[22] “Log4j,” http://logging.apache.org/log4j/2.x/.
[23] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging

library migrations: A case study for the apache software founda-
tion projects,” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16, 2016, pp. 154–164.

[24] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry
practices and event logging: Assessment of a critical software
development process,” in Proceedings of th 37th International Con-
ference on Software Engineering, ser. ICSE ’15, 2015, pp. 169–178.

[25] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in
Proceedings of the 37th International Conference on Software Engineer-
ing, ser. ICSE ’15, 2015, pp. 415–425.

[26] Z. Li, T. Chen, and W. Shang, “Where shall we log? studying and
suggesting logging locations in code blocks,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2020, 2020, pp. 361–372.

[27] Z. Li, “Studying and suggesting logging locations in code blocks,”
in ICSE ’20: 42nd International Conference on Software Engineering,
Companion Volume, 2020, pp. 125–127.

[28] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing state-
ments under specified overhead threshold,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17, 2017,
pp. 565–581.

[29] H. Pinjia, Z. Chen, S. He, and M. R. Lyu, “Characterizing the
natural language descriptions in software logging statements,” in
Proceedings of the 33rd IEEE international conference on Automated
software engineering, 2018, pp. 1–11.

[30] Z. Li, H. Li, T. Chen, and W. Shang, “DeepLV: Suggesting log
levels using ordinal based neural networks,” in Proceedings of the
43rd International Conference on Software Engineering, ICSE 2021, pp.
1–12.

[31] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-
patterns in the logging code,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17, 2017, pp. 71–81.

[32] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis, “Studying and
detecting log-related issues,” Empirical Software Engineering, 2018.

[33] D. Budgen, Software Design. Addison-Wesley, 2003.
[34] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing

Code, ser. Addison-Wesley object technology series, 1999.
[35] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?”

in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), May 2010, pp. 72–81.

[36] C. K. Roy and J. R. Cordy, “NICAD: accurate detection of near-
miss intentional clones using flexible pretty-printing and code nor-



17

malization,” in The 16th IEEE International Conference on Program
Comprehension, ser. ICPC ’08, 2008, pp. 172–181.

[37] Z. Li, T. P. Chen, J. Yang, and W. Shang, “DLFinder: Characterizing
and detecting duplicate logging code smells,” in Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019,
2019, pp. 152–163.

[38] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in ICSE 2012: Proceedings of the 2012
International Conference on Software Engineering, 2012, pp. 102–112.

[39] H. Li, W. Shang, and A. E. Hassan, “Which log level should de-
velopers choose for a new logging statement?” Empirical Software
Engineering, vol. 22, no. 4, pp. 1684–1716, Aug 2017.

[40] H. Li, T.-H. P. Chen, W. Shang, and A. E. Hassan, “Studying soft-
ware logging using topic models,” Empirical Software Engineering,
vol. 23, pp. 2655—-2694, Jan 2018.

[41] Z. Li, “Characterizing and detecting duplicate logging code
smells,” in Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, ICSE 2019, 2019, pp. 147–149.

[42] B. Chen and Z. M. J. Jiang, “Extracting and studying the logging-
code-issue-introducing changes in java-based large-scale open
source software systems,” Empir. Softw. Eng., vol. 24, no. 4, pp.
2285–2322, 2019.

[43] ——, “Studying the use of java logging utilities in the wild,”
in ICSE ’20: 42nd International Conference on Software Engineering.
ACM, 2020, pp. 397–408.

[44] “Simple logging facade for Java (SLF4J),” http://www.slf4j.org,
last checked Feb. 2018.

[45] S. Boslaugh and P. Watters, Statistics in a Nutshell: A Desktop Quick
Reference, ser. In a Nutshell (O’Reilly). O’Reilly Media, 2008.

[46] M. L. McHugh, “Interrater reliability: the kappa statistic,” Bio-
chemia Medica, vol. 22, no. 3, pp. 276–282, 2012.

[47] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm, “Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-
intensive systems,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14, 2014,
pp. 249–265.

[48] “Changes to JobHistory makes it backward incompatible,” https:
//issues.apache.org/jira/browse/HADOOP-4190, last checked
April 4th 2018.

[49] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip:
Extracting hidden structures via iterative clustering for log com-
pression,” in 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, 2019, pp. 863–873.

[50] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection of
system log datasets towards automated log analytics,” CoRR, vol.
abs/2008.06448, 2020.

[51] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Softw., vol. 29, no. 6, pp.
18–21, 2012.

[52] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software Engi-
neering, ser. ICSE ’13, 2013, pp. 672–681.

[53] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor?
confessions of github contributors,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’16, 2016, pp. 858–870.

[54] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the
use of topic models when mining software repositories,” Empirical
Software Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[55] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[56] J. Yang and L. Tan, “SWordNet: Inferring semantically related
words from software context,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1856–1886, 2014.

[57] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, 2016, pp. 1–10.

[58] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “Elblocker: Predict-
ing blocking bugs with ensemble imbalance learning,” Information
& Software Technology, vol. 61, pp. 93–106, 2015.

[59] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014,
2014, pp. 72–81.

[60] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous
java performance evaluation,” in Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA, 2007, pp. 57–76.

[61] T.-H. Chen, S. Weiyi, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proceedings of the
36th International Conference on Software Engineering (ICSE), 2014,
pp. 1001–1012.

[62] M. Fowler, Refactoring - Improving the Design of Existing Code, ser.
Addison Wesley object technology series. Addison-Wesley, 1999.

[63] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in Proceed-
ings of the 2nd International Conference on Software Testing Verification
and Validation, ICST 2009, 2009, pp. 157–166.

[64] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection
tools,” in Proceedings of the 30th International Conference on Software
Maintenance and Evolution, 2014, pp. 321–330.

[65] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evalu-
ation of code clone detection techniques and tools: A qualitative
approach,” Science of Computer Programming, vol. 74, no. 7, pp. 470
– 495, 2009.

[66] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE Trans.
Software Eng., vol. 33, no. 9, pp. 577–591, 2007.

[67] M. Mondal, C. K. Roy, and K. A. Schneider, “Micro-clones in evolv-
ing software,” in Proceedings of the 25th International Conference on
Software Analysis, Evolution and Reengineering, 2018, pp. 50–60.

[68] M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider, “Investigating
near-miss micro-clones in evolving software,” in ICPC ’20: 28th
International Conference on Program Comprehension, 2020, pp. 208–
218.

[69] ——, “Ranking co-change candidates of micro-clones,” in Proceed-
ings of the 29th Annual International Conference on Computer Science
and Software Engineering, CASCON 2019, pp. 244–253.

[70] J. F. Islam, M. Mondal, C. K. Roy, and K. A. Schneider, “Comparing
bug replication in regular and micro code clones,” in Proceedings
of the 27th International Conference on Program Comprehension, ser.
ICPC ’19, 2019, pp. 81–92.

[71] J. F. Islam, M. Mondal, and C. K. Roy, “A comparative study of
software bugs in micro-clones and regular code clones,” in 26th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, 2019, pp. 73–83.

[72] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-
related bugs,” in Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, pp. 55–64.

[73] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of
current knowledge,” Journal of Software Maintenance, vol. 23, no. 3,
pp. 179–202, 2011.

[74] T. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. N.
Nasser, and P. Flora, “Analytics-driven load testing: An industrial
experience report on load testing of large-scale systems,” in Pro-
ceedings of the 39th IEEE/ACM International Conference on Software
Engineering, ICSE-SEIP, 2017, pp. 243–252.

[75] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguis-
tic token-based code clone detection system for large scale source
code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.
654–670.

[76] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 176–192, 2006.

[77] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs
using distributed ccfinder: D-ccfinder,” in Proc. of the 29th Int.
conference on Software Engineering, 2007.

[78] J. Krinke, “Identifying similar code with program dependence
graphs,” in Proceedings of the Eighth Working Conference on Reverse
Engineering, WCRE’01, 2001, pp. 301–309.

[79] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in 30th International Conference on Software Engineering
(ICSE 2008), 2008, pp. 321–330.

[80] B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices
in java-based open source software projects – a replication study
in apache software foundation,” Empirical Software Engineering,
vol. 22, no. 1, pp. 330–374, Feb 2017.

http://www.slf4j.org
https://issues.apache.org/jira/browse/HADOOP-4190
https://issues.apache.org/jira/browse/HADOOP-4190


18

[81] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D.
Lucia, and D. Poshyvanyk, “When and why your code starts to
smell bad,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 1, May 2015, pp. 403–414.

[82] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code
smells and merge conflicts,” in Proceedings of the 11th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ser. ESEM ’17, 2017, pp. 58–67.

[83] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, “Quantifying the effect of code smells on maintenance
effort,” IEEE Transactions on Software Engineering, vol. 39, no. 8, pp.
1144–1156, Aug 2013.

[84] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and
C. Jensen, “Understanding code smells in android applications,”
in Proceedings of the International Conference on Mobile Software
Engineering and Systems, 2016, pp. 225–234.

[85] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular ex-
pression comprehension,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Oct 2017, pp.
405–416.

[86] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of
lexicon bad smells on concept location in source code,” in 2011
IEEE 11th International Working Conference on Source Code Analysis
and Manipulation, Sept 2011, pp. 125–134.

[87] X. Xiao, S. Han, C. Zhang, and D. Zhang, “Uncovering javascript
performance code smells relevant to type mutations,” in Program-
ming Languages and Systems, X. Feng and S. Park, Eds., 2015, pp.
335–355.

[88] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov 2013, pp.
268–278.

[89] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and
T. N. Nguyen, “Detection of embedded code smells in dynamic
web applications,” in Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE 2012,
2012, pp. 282–285.

[90] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight
visualizations to support code smell inspection,” in Proceedings of
the 4th ACM Symposium on Software Visualization, ser. SoftVis ’08,
2008, pp. 77–86.

[91] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,”
in Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’10,
2010, pp. 8:1–8:10.

[92] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refac-
toring code smells in spreadsheet formulas,” Empirical Software
Engineering, vol. 20, no. 2, pp. 549–575, 2015.

[93] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the 31st International Conference on
Software Engineering, ICSE 2009, 2009, pp. 485–495.

[94] C. Kapser and M. W. Godfrey, “Cloning considered harmful,”
Reverse Engineering, Working Conference on, vol. 0, pp. 19–28, 2006.

[95] N. Göde and R. Koschke, “Frequency and risks of changes to
clones,” in Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011, 2011, pp. 311–320.

Zhenhao Li Zhenhao Li is a Ph.D. student at the
Department of Computer Science and Software
Engineering at Concordia University, Montreal,
Canada. He obtained his M.ASc degree from
Concordia University and B.Eng. from Harbin
Institute of Technology. His work has been pub-
lished at renowned venues such as ICSE and
ASE. His research interests include software log
analysis, improving logging practices, program
analysis, and mining software repositories. More
information at: https://ginolzh.github.io/.

Tse-Hsun (Peter) Chen Tse-Hsun (Peter) Chen
is an Assistant Professor in the Department of
Computer Science and Software Engineering
at Concordia University, Montreal, Canada. He
leads the Software PErformance, Analysis, and
Reliability (SPEAR) Lab, which focuses on con-
ducting research on performance engineering,
program analysis, log analysis, production de-
bugging, and mining software repositories. His
work has been published in flagship conferences
and journals such as ICSE, FSE, TSE, EMSE,

and MSR. He serves regularly as a program committee member of
international conferences in the field of software engineering, such as
ASE, ICSME, SANER, and ICPC, and he is a regular reviewer for
software engineering journals such as JSS, EMSE, and TSE. Dr. Chen
obtained his BSc from the University of British Columbia, and MSc
and PhD from Queen’s University. Besides his academic career, Dr.
Chen also worked as a software performance engineer at BlackBerry
for over four years. Early tools developed by Dr. Chen were integrated
into industrial practice for ensuring the quality of large-scale enterprise
systems. More information at: https://petertsehsun.github.io/.

Jinqiu Yang Jinqiu Yang is an Assistant Pro-
fessor in the Department of Computer Science
and Software Engineering at Concordia Univer-
sity, Montreal, Canada. Her research interests
include automated program repair, software test-
ing, software text analytics, and mining software
repositories. Her work has been published flag-
ship conferences and journals such as ICSE,
FSE, EMSE. She serves regularly as a program
committee member of international conferences
in Software Engineering, such as ASE, ICSE,

ICSME and SANER. She is a regular reviewer for Software Engineering
journals such as EMSE and JSS. Dr. Yang obtained her BEng from
Nanjing University, and MSc and PhD from University of Waterloo. More
information at: https://jinqiuyang.github.io/.

Weiyi Shang Weiyi Shang is an Assistant
Professor and Concordia University Research
Chair in Ultra-large-scale Systems at the De-
partment of Computer Science and Software
Engineering at Concordia University, Montreal.
He has received his Ph.D. and M.Sc. degrees
from Queens University (Canada) and he ob-
tained B.Eng. from Harbin Institute of Technol-
ogy. His research interests include big data soft-
ware engineering, software engineering for ultra-
largescale systems, software log mining, em-

pirical software engineering, and software performance engineering.
His work has been published at premier venues such as ICSE, FSE,
ASE, ICSME, MSR and WCRE, as well as in major journals such as
TSE, EMSE, JSS, JSEP and SCP. His work has won premium awards,
such as SIGSOFT Distinguished paper award at ICSE 2013 and best
paper award at WCRE 2011. His industrial experience includes helping
improve the quality and performance of ultra-large-scale systems in
BlackBerry. Early tools and techniques developed by him are already in-
tegrated into products used by millions of users worldwide. Contact him
at shang@encs.concordia.ca; https://users.encs.concordia.ca/∼shang.

https://users.encs.concordia.ca/~shang


19

APPENDIX A
PRECISION OF NICAD ON DETECTING DUPLICATE
LOGGING STATEMENTS THAT RESIDE IN CLONED
CODE
We rely on NiCad for automated clone detection. To examine the false
positives of NiCad, we then manually verify a randomly sampled set
of duplicate logging statements (281 sets in total, with 95% confidence
level and 5% confidence interval) that are classified as clones by NiCad.
For each set of the sampled duplicate logging statements, we manually
go through the logging statements and their surrounding code to verify
whether they are clones or not. Overall, we find that 272 out of the 281
sampled sets (96.8%) are clones, which is similar to the performance of
NiCad that is reported in prior studies. For the 9 false positives, 3 of
them are duplicate logging statements located in different branches of
a nested method (i.e., developers define a method within a method). In
such cases, NiCad would analyze the code block twice. For example,
in ElasticSearch 2, two duplicate logging statements with the same
static text message “Failed to execute NodeStatsAction for ClusterInfoUp-
dateJob” are located in different branches of the same nested method
onFailure(Exception e). However, since the method onFailure(Exception
e) is defined in the method refresh(), NiCad would analyze the same
code block twice and detect them as clones. For the remaining 6 out
of 9 false positives, we could not identify the reasons that they are
classified as clones, since the code snippets look neither structurally
nor semantically similar.

2. https://github.com/elastic/elasticsearch/blob/
70b8d7bc64f165735502de9d8c5fa673fa21e02b/server/src/main/java/
org/elasticsearch/cluster/InternalClusterInfoService.java

https://github.com/elastic/elasticsearch/blob/70b8d7bc64f165735502de9d8c5fa673fa21e02b/server/src/main/java/org/elasticsearch/cluster/InternalClusterInfoService.java
https://github.com/elastic/elasticsearch/blob/70b8d7bc64f165735502de9d8c5fa673fa21e02b/server/src/main/java/org/elasticsearch/cluster/InternalClusterInfoService.java
https://github.com/elastic/elasticsearch/blob/70b8d7bc64f165735502de9d8c5fa673fa21e02b/server/src/main/java/org/elasticsearch/cluster/InternalClusterInfoService.java

	Introduction
	Identifying Duplicate Logging Statements for Manual Study
	Patterns of Duplicate Logging Code Smells
	DLFinder: Automatically Detecting Problematic Duplicate Logging Code Smells
	Case Study Results
	RQ4: What are the Relationships between Problematic Duplicate Logging Code Smells and Code Clones?
	RQ5: What are the Relationships Between Duplicate Logging Statements and Code Clones?
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Zhenhao Li
	Tse-Hsun (Peter) Chen
	Jinqiu Yang
	Weiyi Shang

	Appendix A: Precision of NiCad on Detecting Duplicate Logging Statements that Reside in Cloned Code

