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Abstract

Though many approaches have been proposed for Automated Pro-
gram Repair (APR) and indeed achieved remarkable performance,
they still have limitations in fixing bugs that require analyzing and
reasoning about the logic of the buggy program. Recently, large
language models (LLMs) instructed by prompt engineering have
attracted much attention for their powerful ability to address many
kinds of tasks including bug-fixing. However, the quality of the
prompt will highly affect the ability of LLMs and manually con-
structing high-quality prompts is a costly endeavor.

To address this limitation, we propose a self-directed LLM-based
automated program repair, ThinkRepair, with two main phases:
collection phase and fixing phase. The former phase automatically
collects various chains of thoughts that constitute pre-fixed knowl-
edge by instructing LLMs with the Chain-of-Thought (CoT) prompt.
The latter phase targets fixing a bug by first selecting examples for
few-shot learning and second automatically interacting with LLMs,
optionally appending with feedback of testing information.

Evaluations on two widely studied datasets (Defects4] and Quix-
Bugs) by comparing ThinkRepair with 12 SOTA APRs indicate the
priority of ThinkRepair in fixing bugs. Notably, ThinkRepair fixes
98 bugs and improves baselines by 27%~344.4% on Defects4] V1.2.
On Defects4] V2.0, ThinkRepair fixes 12~65 more bugs than the
SOTA APRs. Additionally, ThinkRepair also makes a considerable
improvement on QuixBugs (31 for Java and 21 for Python at most).
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1 Introduction

Automated Program Repair (APR) is a promising approach to auto-
matically fix bugs in computer programs, which can significantly
reduce debugging time and enhance software reliability. Traditional
APR techniques can be classified into heuristic-based [25, 26, 59],
constraint-based [10, 24, 38, 43], and template-based [15, 19, 35, 36,
42] approaches. Template-based APRs can fix a large number of bugs
using predefined templates, but are limited to these patterns and
lack generalizability to other types of bugs. To address this limita-
tion, techniques based on Neural Machine Translation (NMT) have
been extensively studied in recent years [11, 20, 21, 44, 64, 65, 67].
These approaches treat fixing bugs as an NMT problem, where the
goal is to translate buggy code into correct code, rely heavily on
bug-fixing datasets obtained from open-source repositories.

To overcome the limitations of NMT-based APR, researchers are
exploring the use of pre-trained LLMs, which generate correct code
directly based on context, mitigating the need for translation from
buggy code by pre-training on large amounts of open-source code
snippets. AlphaRepair [62] is the first tool for cloze-style APR and its
performance indicates that LLM-based APR outperforms the widely
studied NMT-based APR techniques. Following that, researchers [23,
50] adopt Codex to generate a repaired code function based on the
buggy one. Recently, Xia et al. [61] conducted an extensive study
of LLM-based APR using various LLMs [5, 8, 14, 57] by In-Context
Learning, further demonstrated the superiority of LLM-based APR.

Instead of directly generating an answer, Chain-of-Thought
(CoT) prompting [58] instructs LLMs to obtain an answer with
a step-by-step process, which largely improves performance on
reasoning. Despite the success of CoT, studies [34, 39] have shown
that the strength of LLMs depending on the few-shot examples, and
low-quality examples are unable to guide LLMs to engage more
profound inferential reasoning.
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In this paper, we aim to advance APR by introducing ThinkRe-
pair, an approach with strong analyzing and reasoning capabilities
for program repair tasks. First, we propose an LLM-based frame-
work for APR. LLMs are trained in an unsupervised fashion using
up to billions of text/code tokens. This large-scale unsupervised
learning process allows LLMs to have strong reasoning thinking and
can be applied for program repair without relying on historical bug
fixes. Therefore, we propose a novel LLM-based approach ThinkRe-
pair for APR since representative conversational LLM model pro-
vides advanced capabilities for several tasks, including natural lan-
guage processing [47], code generation [27], and bug-fixing [18, 56].
Second, we develop a self-directed framework to enhance the
LLM’s capabilities. Fixing bugs requires logical thinking and a co-
herent series of intermediate steps and few-shot CoT enables LLMs
to improve their analytical and reasoning capabilities through a
step-by-step process instead of generating fixed code directly. How-
ever, previous studies [28, 33, 60] have shown that the quality of
prompts will highly affect LLM’s reasoning abilities across various
tasks. Meanwhile, manually constructing high-quality prompts is a
costly endeavor. Therefore, we propose ThinkRepair, which con-
tains two phases: (1) the collection phase aims to construct chains
of thoughts that constitute pre-fixed knowledge pool and (2) the
fixing phase aims to fix a buggy function by selecting high-quality
examples from pre-fixed knowledge pool for few-shot learning and
interacting with LLM with optional feedback testing information.

We conduct experiments on two widely studied dataset (i.e., De-
fects4] [22] and QuixBugs [32]) by comparing ThinkRepair with
12 state-of-the-art APR approaches. The results indicate the pri-
ority of ThinkRepair over baselines. For example, on Defects4]
V1.2, ThinkRepair totally fixes 98 bugs and improves baselines by
27%~344.4%. ThinkRepair also achieve the best performance on
Defects4] V2.0 and fixes 12~65 more bugs than SOTAs. Our results
also show that ThinkRepair has a complementary results to the
SOTAs and exclusively fixes 32 bugs (out of 98) that the SOTAs can
not fix. We also collect bugs from real-world projects to evaluate
data leakage. ThinkRepair can fix 19 out of 44 bugs on RWB V1.0,
and 10 out of 29 bugs on RWB V2.0.

In summary, the key contributions of this paper include:

A. Novel Self-directed LLM-based APR: ThinkRepair ad-
vances LLM-based APR for program bugs. We show that LLM-based
APR can achieve comparable and complementary results as other
APR directions.

B. Automatic Reasoning for APR: (1) Few-shot CoT that
largely enhances analyzing and reasoning capabilities to under-
stand the semantics of the buggy function; (2) The framework with
automated chains of thoughts collection, few-shot selection and
interaction feedback to promote reasoning for APR.

C. Extensive Evaluation: (1) We evaluate ThinkRepair against
current state-of-the-art NMT-based and LLM-based tools on the
widely studied Defects4] [22] and QuixBugs [32] datasets; (2) We
also conduct a further study about the data leakage in ThinkRepair
by collecting new datasets from real-world projects.

2 Motivation
2.1 A Motivation Example

Fig. 1 shows the bug (Closure-56) and its fix of a Java project named
Closure. The function’s purpose is to extract a specified line of
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text from the given text content. It takes a “lineNumber” as input
and returns the content of the corresponding line. The function
first retrieves the text content and searches line by line from the
beginning until it finds the specified line number or reaches the
end of the file. If it successfully finds the specified line, it returns
the content of that line. However, there is a logical error inside the
function (i.e., Line 6). When it fails to retrieve the text content or
the specified line number is invalid, this buggy function incorrectly
returns “null”. To fix this bug, a developer modified the return
statement inside the “if (js.indexOf(‘\n’, pos) == -1)” block. The
updated code snippet resolves the bug by checking if the variable
“pos” has exceeded the length of the “s” string. If it does, it returns
“null”, indicating that the requested line number is out of bounds.
Otherwise, it returns the “substring” from “pos” to the end of the
“js” string, effectively returning the content of the requested line.

To fix the logic error in Fig. 1, one needs to understand the
semantics of the function. For example, the purpose of “getLine”
is to extract a specified line of text from the given text content,
with two additional handling cases when it cannot find the next
line break. Fixing this bug requires to add additional code, which is
more challenging than modifying or deleting code to fix a bug, as
it demands a greater understanding ability (e.g., considering new
code boundaries or new code functionality).

01 |public String getLine(int lineNumber) {
02| e

03| lastOffset = pos;

04| lastLine = lineNumber;

05| if (js.indexOf("\n', pos) == -1) {
return null;

07|+ if (pos >= js.length()) {

08| + return null;

09|+ }else {

10| + return js.substring(pos, js.length());

1+ 3

12| }else{

13 return js.substring(pos, js.indexOf("\n', pos));
14 }

15|}

Figure 1: Closure-56: a code logic error in Closure project

Observation 1. Fixing the above bug requires powerful code un-
derstanding and reasoning about the code logic for the given buggy
function. Over the years, several NMT-based APRs [20, 21, 44, 64,
65] have been proposed, and show strong bug fixing capabilities
through training on large amounts of labeled data. However, none
of them has possessed powerful analytical reasoning capabilities
to auto-fix the above bug, such as KNOD [20] and SelfAPR [64]. If
there are no similar repair patterns in their training data, it becomes
difficult to correctly fix the issue, as none of them can understand
and reason to add new logic into the code for fixing.

Observation 2. Powerful models need to be empowered and
guided with prior fix knowledge. Unlike current NMT-based APRs
using limited number of bug fixes as training data, LLM is di-
rectly pre-trained using millions of code snippets from open-source
projects, allowing it to provide a variety of edit types to fix different
bugs. LLM has shown dominantly superior reasoning capabilities
over any other existing Al models in natural language and code
understanding [4]. We observed that LLM can correctly understand
the code in Fig. 1, but cannot auto-fix it due to the missing rea-
soning required by fixing. The performance of LLM is influenced
by prompts, and low-quality prompts are unable to guide LLM to
engage in more profound inferential reasoning to fix such bugs.
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Figure 2: Overview of ThinkRepair

2.2 Key Ideas

Based on the above observations, we propose an LLM-based APR
framework using chain-of-thought reasoning combined with few-
shot learning to enhance the analysis and reasoning capabilities for
understanding the semantics of functions.

(1) LLM-based APR. Unlike the specifically designed NMT-
based APR models, LLMs are unsupervised trained using up to
billions of text/code tokens. This large-scale unsupervised learn-
ing process allows LLMs to have strong reasoning capabilities and
be applied for program repair without relying on training with a
large amount of historical bug fixes. Therefore, we propose a novel
self-directed LLM-based APR, namely ThinkRepair, since represen-
tative conversational LLM model provides advanced capabilities
for several tasks, including bug-fixing [18, 56, 63].

(2) Automated few-shot CoT for APR. Automated program
repair is not a trivial task since it requires logical thinking to un-
derstand the semantics of the buggy function and a coherent series
of intermediate steps to fix the bugs. Even with powerful reasoning
capabilities, LLMs still require some guidance in orchestrating the
steps for fixing. Instead of directly generating fixed code, chain-of-
thought inside LLMs can help analyze and reason the code logic.
Meanwhile, few-shot examples can help LLMs to better under the
faced task, but the quality of examples will highly affect the capa-
bilities. Thus, we design an automated approach that extracts the
chains of thoughts from the LLMs, selects effective examples for
few-shot learning, and composes a prompt with CoTs for fixing.

3  Our Approach: ThinkRepair

ThinkRepair has two main phases (illustrated in Fig. 2 and Al-
gorithm 1): @ collection phase and @ fixing phase. The for-
mer phase is to collect chains of thoughts that constitute pre-fixed
knowledge, and the latter phase fixes a bug with CoT-based prompt-
ing and few-shot learning. In this paper, we adopt ChatGPT [47],
CodeLlama [53], DeepSeek-Coder [3], and StarCoder [27] as the
backend LLMs. ThinkRepair is flexible to include other state-of-
the-art LLMs as the backend model. The details of ThinkRepair are
presented in the following subsections.

3.1 Collection Phase

This phase aims to collect a variety of chains of thoughts that
constitute the knowledge pool. To achieve this, we need to address
three tasks: (1) Prompt Preparation, (2) Chains of Thoughts
Collection, and (3) Function Verification.

3.1.1  Task 1: Prompt Preparation. The prompt used in ThinkRepair

involves four important components as illustrated in Fig. 3:

o Role Designation (marked as @). ThinkRepair starts a role
for LLM with an instruction like “You are an Automated
Program Repair tool”.

Algorithm 1: Collection Phase and Fixing Phase

Collection Phase (Section 3.1)
Input: Buggy functions F;
for f in F do
1: Combine the buggy function f into the prompt;
2: Generate CoT and fixed function by prompting the LLM;
3: Test the fixed function, retaining the valid function (with their
buggy function and CoT) into K;
Output: Knowledge Pool K;

Fixing Phase (Section 3.2)
Input: Knowledge Pool K, Buggy function f, interaction=1;
1: Select few-shot examples E from knowledge pool K;
2: Combine the example E and buggy function f into the prompt;
3: Generate CoT and fixed function by prompting the LLM;
4: while Fixed Function is invalid && interaction++ < 5 do
| Add test failure information to prompt and regenerate;

Output: Fixed function f7;

e Task Description (marked as @). LLM is provided with the
description constructed as *// Provide a fix for the
buggy function”.Since we illustrate an example in Java, we
use the Java comment format of “/ /" as a prefix.

e Buggy Function (marked as ®). ThinkRepair provides the buggy
function to LLM in our single-function fixing scenario. We also
prefix the buggy function with “// Buggy Function” to
directly indicate LLM about the context of the function.

e Chain-of-Thought Indicator (marked as @). LLM is instructed
to think step-by-step when fixing a bug. In this paper, we fol-
low the best practice in previous work [58] and adopt the same
prompt named “Let’s think step by step”.

Collection Phase
Task 1: Prompt Preparation
You are an Automated Program Repair tool

1 Role Designation

// Provide a fix for the buggy function
// Buggy Function
public static long multiplyNumbers (int a, int b) {
int result =a * b;
return result;

}
4 CoT Indicator Let’s think step by step.
" m i@ LLM
Task 2: Chains of Thoughts Collection

CoT: (Reason cause)

2 Task Description

3 Buggy Function

(Identify bug)

Generated Function:

public static long multiplyNumbers(int a, int b) {
long result = (long) a * b;
return result;

4

. = q @ CoT & Generated Function
Task 3: Function Verification

3

©]
Y 1@ o'
40 20ee! 0% 0,0 |
'e®co0 192 %0 ¢ !
|Oo' OO: :.oo.o 1
|O.O OOO 1 1 0

Figure 3: The Process of the Collection Phase
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3.1.2  Task 2: Chains of Thoughts Collection. Given a corpus of
buggy functions, ThinkRepair uses the decorated prompt to collect
chains of thoughts on fixing the buggy functions. The output of
Task 2 is a collection of samples, where a sample includes a buggy
function, its fixed version, and the chain of thought. As an example
in Fig. 3, the multiplyNumbers function initially fails to consider
the possibility of an overflow bug when performing multiplication
operations. LLM reasons that the result of multiplying “integer a”
and “integer b” inside “multiplyNumbers” function can cause a bug.
The result is originally planned to be stored in another integer
variable, which may cause an overflow bug if the multiplication
result exceeds the range of an integer. Thus, it suggests converting
the type of multiplication results (i.e., “result”) into a “long” type
and consequently resolving the overflow problem.

3.1.3  Task 3: Function Verification. To get effective samples, it is
imperative to filter out low-quality thought processes. ThinkRepair
runs a test suite (originally supported by the studied dataset, cf.
Section 4.1) to test the fixed functions extracted from LLM’s output
in Task 2, retaining only the fixed functions (with their buggy
functions and CoTs) that successfully pass the entire test suite.
Meanwhile, LLM may not always correctly fix one buggy function
at the first attempt. Thus, we execute the process at most 25 attempts
for each bug (refer to Section 4.3 for more details).

3.2 Fixing Phase

In this phase, ThinkRepair first selects diverse and effective sam-
ples from the knowledge pool in the collection phase. ThinkRepair
automatically utilizes selected examples (i.e., buggy function as
well as its corresponding fixed version appended with reasoning
process) and the targeted buggy function (i.e., function to be fixed)
to compose a prompt to interact with LLM. Finally, ThinkRepair
obtains the output from LLM including both the chains of thoughts
and the candidate fixed function to the buggy one. Notice that each
candidate function generated by LLM will be passed through a func-
tion verification step and the feedback from the verification step
will be appended to LLM for further refinement. Overall, the fixing
phase has three tasks: (1) Few-Shot Selection, (2) Automatic
Fixing, and (3) Interaction Verification.

Task 1: Few-Shot Fixing Phase

'
1
! Example
1
'@ [ 19
! oo
1
1
!
Task 2: A ic Fixing
Few-Shot CoT
Example Target Feedback
- L [// Provide a fix for the buggy function
/I Provide a fix for the ... |/ Buggy Function
/I Buggy Function public static double distance(int[] p1, int[] p2) {
int sum = 0;
Let’s think step by step.
return Math.sqrt(sum);
/I Fixed Function )
Let’s think step by step.
Task 3: Interaction Verification l @H‘M
CoT Generated Function
public static double distance(int[] pl, int[] p2) {
double sum = 0;
for (inti=0; i < pl.length; i++) {
final double dp = p1[i] - p2[il;
sum +=dp * dp;
return Math.sqrt(sum);
}

Figure 4: The Process of the Fixing Phase
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3.2.1 Task 1: Few-Shot Selection. LLM needs a high-quality prompt
to instruct itself to finish the downstream tasks, which is also the
focus of prior works [12, 60, 63]. Similarly, we aim to reduce labor in-
volvement in instructing LLM by guiding it to learn from the solved
problems. To achieve this, we need to identify the most beneficial
examples from the knowledge pool. Moreover, previous work [66]
concludes that a few diverse examples may help LLM achieve a
better generalization ability. Therefore, ThinkRepair clusters these
examples inside the knowledge pool on the basis of their semantic
similarity to pick out distinct ones [28, 66]. Furthermore, consider-
ing the limitations of LLMs’ conversation windows, all examples in
the knowledge pool are clustered into two clusters, with one sample
selected from each cluster (i.e., two shots used in this paper). We
employ two advanced embedding strategies (i.e., Semantic-based
Selection and Contrastive-based Selection) to select semantically
similar examples. For comparison, we also use IR-based Selection
and Randomly Selection, and the details are elaborated as follows.

e Semantic-based Selection adopts a pre-trained model (i.e.,
UniXcoder, which effectively comprehends code semantic in-
formation [17, 45]) to embed all the buggy functions and then
uses the K-means algorithm [41] for clustering. During the fixing
phase, the most semantic similar examples are picked out from
each cluster based on cosine similarity.

o Contrastive-based Selection utilizes the contrastive learning
framework R-Drop [46] to further fine-tune UniXcoder for better
semantic embedding. We input one function twice to get the
embeddings E; and Ej. The training objective is the distance
between E; and E; should be as small as possible. For clustering,
it remains the same operation as Semantic-based Selection.

o IR-based Selection builds indexes for code in the knowledge
pool and then retrieves similar examples by BM25 score [52].

e Randomly Selection randomly selects a few examples from the
knowledge pool built in the collection phase.

3.2.2  Task 2: Automatic Fixing. ThinkRepair utilizes the selected
examples and the target buggy function (i.e., to be fixed) to construct
a prompt (i.e., @ + @ marked in Fig. 4). Then, ThinkRepair uses
this prompt to interact with LLM and help it to infer the bug-fixing
solution. Following that, we can obtain the model outputs, which
usually contain the process of LLM’s thought and the candidate
fixed function, which will be verified in the next step.

3.2.3 Task 3: Interaction Verification. ThinkRepair complies and
runs test suite to verify all candidate fixed functions generated
by LLM. In case a candidate function fails to pass all test cases,
ThinkRepair first collects the failing test information, which can
aid LLM in understanding the failure causes and provide guidance
to generate the correct fix. In particular, the test failure messages
can be divided into four categories: (1) Compile Fail, (2) Time Out,
(3) Syntax Error, and (4) Failing test: TestClass:: TestFunction. Then,
ThinkRepair reconstructs the prompt and appends the failing infor-
mation (i.e., ® marked in Fig. 4) to the back of the original prompt
(i.e., ® + @ marked in Fig. 4). Here, the failing information is added
into a template: “The fixed version is still not correct. {test failure
message]. Please fix it again. Let’s think step by step.” Then, ThinkRe-
pair interacts with LLM using the new prompt (i.e., ©+®+®) to
generate a new fixed solution. LLM can avoid generating similar
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mistakes and also learn from previous interactions based on new
prompt. This iterative process continues until a fixed function is
obtained (i.e., successfully passing the entire test suite) or the max-
imum number of interactions exceeds (i.e., five times for a better
balance between effectiveness and cost, refer to Section 5.3).

4 Experimental Design

We present the experimental design, including studied datasets,
baselines, evaluation metrics, and experiment settings.

4.1 Datasets

For the evaluation, we follow previous studies [61-63] to adopt
the two APR benchmarks (Defects4] dataset [22] and QuixBugs
dataset [32]) spanning across two popular programming languages
(i.e., Java and Python). Similar to prior APR studies [61-63], we
separate Defects4] into Defects4] 1.2 and Defects4] 2.0. Defects4] 1.2
consists of 391 bugs in 6 different Java projects, while Defects4] 2.0
consists of 438 new bugs across 9 additional projects. We also focus
on scenarios where the fix is solely located in a single function since
it is the focal point of most recent APR work [21, 40, 61, 62, 65, 67].
We filter out the datasets to contain single function bugs. The
statistic of each evaluation dataset is presented in Table 1.

Table 1: Statistics of studied dataset

Dataset # Total Bugs # SFBugs #SHBugs #SL Bugs
Defects4] 1.2 391 255 154 80
Defects4] 2.0 438 228 159 78
QuixBugs-Java 40 40 37 37
QuixBugs-Python 40 40 40 40
# Sum 909 563 390 235

*Defects4] 1.2 and Defects4] 2.0 are two completely independent versions, with
no overlapping bugs between them.

4.2 Baselines and Evaluation Metrics

Studied Baselines. We compare ThinkRepair with the twelve state-
of-the-art APR approaches in Table 2, including eight NMT-based
and four LLM-based SOTAs in APR. AlphaRepair is an LLM-based
repair tool that employs the pre-trained CodeBERT model [13]
with cloze-style APR, which means that it does not require fine-
tuning on bug-fixing data. Codex and GPT-NeoX directly applied
LLMs for APR without fine-tuning [61]. ChatRepair is similar to
our work, which repairs a bug with a conversational ChatGPT. The
NMT-based APR models require fine-tuning for better performance,
while LLM-based APR approaches do not require fine-tuning.
Evaluation Metrics. Following previous work [20, 21, 29-31, 40,
44, 61, 62, 64, 65], we adopt two widely used metrics for evaluating
approaches: (1) number of correct patches and (2) number of plausible
patches. A plausible patch is a patch that can pass all test cases but is
not semantically equivalent to the actual fix. Following the previous
work [61, 62], we also manually check and identify the plausible
patches that are semantically equivalent to the actual fixes.

4.3 Implementation

We developed the generation pipeline in Python, utilizing PyTorch [49]

implementations of CodeLlama 13B, DeepSeek-Coder 7B, and Star-
Coder 16B. We use the Hugging Face [1] to load the model weights
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Table 2: The studied baselines

Approach Category  Fine-Tuning Time/# Patch Venue
KNOD [20] NMT-based v 5Hour  ICSE 2023
TENURE [44] NMT-based v 5Hour  ICSE 2023
RewardRepair [65] NMT-based v 200  ICSE 2022
SelfAPR [64] NMT-based v no setting reported  ASE 2022
CURE [21] NMT-based v/ 10,000  ICSE 2021
DeepDebug [11] NMT-based v 100 arXiv 2021
CoCoNuT [40] NMT-based v 10,000 ISSTA 2020
DLFix [29] NMT-based v 5Hour  ICSE 2020
ChatRepair [63] LLM-based X <200 arXiv 2023
Codex [61] LLM-based X 200  ICSE 2023
GPT-NeoX [61] LLM-based X 200 ICSE 2023
AlphaRepair [62] LLM-based X 5,000 FSE 2022
Ours: ThinkRepair LLM-based X <125  This work

“Time/# Patch”: indicates the longest time set for fixing a bug or the maximum number
of candidate patches that a model was set to loop through via running test cases before a
correct patch is obtained.

and generate outputs. For ChatGPT, we utilize OpenAI’s API ac-
cess [7], complying with the recommended best practices [55] for
each prompt. We utilize the gpt-3.5-turbo model from the ChatGPT
family, which is the version used uniformly for our experiments.
A sampling temperature of 1 is utilized to obtain a diverse set of
potential patches [16]. The maximum number of repair attempts
is set to 25 (i.e., 25 independent sessions) for ThinkRepair as the
default for auto-fixing the single function bugs. Since LLM has a
maximum input limit, we employ two few-shot examples and set
the maximum interaction number to 5 (i.e., up to 5 interactions in
a session). The evaluation is conducted on a 16-core workstation
equipped with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90Ghz,
192GB RAM and NVIDIA RTX 3090 GPU, running Ubuntu 20.04.1
LTS. Following previous APR works [62, 67], we use a default end-
to-end timeout of 5 hours to fix one bug. In practice, the total time
required is on average lower than 20 minutes since we sample
small-scale patches (i.e., 25 attempts X 5 interactions) for each bug.

5 Experimental Results

To investigate the effectiveness of ThinkRepair on bug fixing, our
experiments focus on the following three research questions:

¢ RQ-1 Comparable Study on LLM-based APRs. How does the
performance of ThinkRepair compare with the LLM-based APRs?

¢ RQ-2 Comparable Study on NMT-based APRs. How does
the performance of ThinkRepair compare with the state-of-the-art
NMT-based APRs?

e RQ-3 Sensitivity Analysis. How do different configurations affect
the overall performance of ThinkRepair?

5.1 RQ-1: Compare with LLM-based APRs

RQ1-Analysis Procedure. We evaluate ThinkRepair against four
LLM-based APRs: ChatRepair [63], Codex [61], GPT-NeoX [61],
and AlphaRepair [62]. We adopt ChatGPT [47], CodeLlama [53],
DeepSeek-Coder [3] (we refer to as DeepSeek), and StarCoder [27]
as the backend LLMs for ThinkRepair. In addition, we build baseline
approaches, BaseChatGPT, BaseCodeLlama, BaseDeepSeek, and
BaseStarCoder, which utilize the basic LLMs to perform a repair (i.e.,
directly using existing bug-fixing data as examples) without any
Chains-of-Thoughts reasoning process and feedback information.

Data Splitting. Our ThinkRepair has two phases: the Knowl-
edge Collection and Fixing. We use the buggy functions in Defects4]
V2.0 (i.e., 228) for collection and the ones in Defects4] V1.2 (ie.,
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Table 3: RQ1: ThinkRepair vs. Basic LLMs for different projects on Defects4] V1.2

‘ ThinkRepair with perfect fault info ‘

Basic LLM with perfect fault info

Projects
) ‘ ChatGPT CodeLlama DeepSeek StarCoder ‘ BaseChatGPT BaseCodeLlama BaseDeepSeek BaseStarCoder

Chart 11 10 10 8 5 6 6 5
Closure 31 20 14 20 13 11 9 14

Lang 19 13 11 12 11 10 7 7

Math 27 21 20 16 16 12 13 9
Mockito 6 4 4 2 6 4 3 2

Time 4 2 4 1 1 1 1 0

#Sum | 98 70 63 59 | 52 44 39 37

255) for the fixing phase. Defects4] V1.2 and Defects4] V2.0 are
two completely independent versions, with no overlapping bugs
between them. In addition, we also conduct an experiment to use
functions in Defects4] V1.2 for collection and the ones in Defects4]
V2.0 for the fixing phase. Since QuixBugs dataset has the limited
number of functions (i.e., 40 for both Java and Python), for compre-
hensively evaluating the performance differences, we adhere to the
best-practice guide [55], manually designed 2 examples for fixing
bugs without the collection phase.

Fault Information. Following previous work [21, 40, 61, 62, 65],
we focus on two settings: (1) No fault localization is performed,
the perfect fault information (i.e., including statement-level fault
information) is provided; (2) The fault information at method-level
is provided but no statement-level fault information.

Experiment Settings. Since all of the studied baselines were
already evaluated on Defects4], following the convention in APR
work [61, 62], we directly compare the auto-fix results obtained in
previous studies [61-63] under the same settings.

As for the few-shot selection strategy during the fixing phase,
we adopt the Contrastive-based Selection strategy since it has the
overall best performance. Meanwhile, we set the number of inter-
action feedback as five since it achieves a better balance between
effectiveness and cost (cf. Section 5.3).

In ThinkRepair, we study 3 different repair scenarios used in
previous works [61, 63]: single function, single hunk, and single line.
Note that single hunk fix is a subset of single function fix and single
line fix is a subset of single hunk fix. In QuixBugs-Java, single hunk
is equal to single line (i.e., all single hunk bugs require fixing just
one line of code), while in QuixBugs-Python, all fixes are single line.

The experimental settings for ThinkRepair: only single function
scenario is considered, the results for single hunk and single line
come from single function results. Whereas, the experimental set-
tings for ChatRepair, Codex, and GPT-NeoX are that single function,
single hunk, and single line scenarios are experimented separately,
and the results of three experiments are independent to each other.
These models conducted experiments on the single function bugs
in the same setting as ours, we therefore compared with them on
single function setting only.

RQ1-Results. ThinkRepair vs. Basic LLMs. Table 3 illustrates
the number of bugs successfully repaired by ThinkRepair and Basic
LLMs for different projects in the scenario of single function bug-
fixing. We observe that with perfect fault information, ThinkRepair
demonstrates superior performance across all projects compared
to Basic LLMs. In particular, the performance of ThinkRepair is
significantly better than Basic LLM with improvements ranging
from 59.1%~88.5%. This not only demonstrates the superiority of
our ThinkRepair approach, but also its universal applicability, as it
is not tailored for any specific LLM, but is suitable for various LLMs.

Table 4: RQ1: ThinkRepair vs. LLM-based APRs (SF: Single
Function, SH: Single Hunk, SL: Single Line)
Defects4] QuixBugs
Models V12 V2.0 | Java
SF SH SL|SF SH SL|SF SH| SF

Python

Method-level fault info.

Codex 63 - - - - - |32 - 37
GPT-NeoX 18 - - - - - 8 - 19
BaseChatGPT 36 28 20 | 39 29 23|38 36 35
ThinkRepair* 63 46 33 | 62 44 25| 38 36 38

ThinkRepair 80 64 44 | 90 69 41 |39 36 40

Perfect fault info.

AlphaRepair 67 57 48 | - - 35|28 27 27
ChatRepair 76 - - - - - 139 - 40
BaseChatGPT 52 44 31 | 46 35 25|38 36 37

ThinkRepair* 70 55 37 | 72 53 36 | 38 36 38
ThinkRepair 98 78 52 | 107 81 47 | 39 36 40

“-”: indicates no results reported in the original work, or cannot be directly
compared since different experimental settings.

This underscores its LLM-agnostic design paradigm. To facilitate
comparison, we employ the top two performing models, ChatGPT
and CodeLlama, in the following sections of our results, denoting
them as ThinkRepair and ThinkRepair*, respectively.

ThinkRepair vs. ChatGPT-based APRs. With the perfect
fault information provided, ThinkRepair can auto-fix 98 bugs and
22 more bugs (28.9% improvements) than ChatRepair for single func-
tion bugs in Defects4] V1.2. For the QuixBugs dataset, ThinkRepair
and ChatRepair can auto-fix the same number of bugs. Both mod-
els can auto-fix all bugs in QuixBugs-Python, but miss one bug in
QuixBugs-Java.

ThinkRepair can outperform the BaseChatGPT in all settings.
For example, with the method-level fault information, ThinkRepair
can auto-fix 122.2%, 128.6%, and 120% more bugs than BaseChatGPT
for single function, single hunk, and single line bugs in Defects4]
V1.2, respectively. When provided with perfect fault information,
ThinkRepair can auto-fix 88.5%, 77.3%, and 67.7% more bugs for
single function, single hunk, and single line bugs in Defects4] V1.2.
Similarly, on Defects4] V2.0, ThinkRepair achieves an overwhelm-
ing better performance than BaseChatGPT.

Table 5 illustrates the number of bugs successfully repaired by
ThinkRepair and LLM-based APRs for different projects in the sce-
nario of single function bug-fixing. ThinkRepair and ThinkRepair*
represent for the results of our approach with ChatGPT and CodeL-
lama as the backend LLMs, respectively. We observe that with
or without perfect fault information, ThinkRepair demonstrates
superior performance across all projects compared to BaseChat-
GPT. For example, for the project Closure, ThinkRepair improves
the BaseChatGPT by 280% and 138.5% with the method-level and
perfect fault information, respectively.

ThinkRepair vs. other LLM-based APRs. For single function
bugs in Defects4] V1.2, ThinkRepair can auto-fix 31 more bugs
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Table 5: RQ1: ThinkRepair vs. LLM-based APRs for different projects on Defects4] V1.2

‘ Method-level fault info

Perfect fault info

Projects
) ‘ ThinkRepair ThinkRepair* BaseChatGPT GPT-NeoX Codex ‘ ThinkRepair ThinkRepair* BaseChatGPT ChatRepair AlphaRepair

Chart 9 8 3 11 10 5 - 8
Closure 19 19 5 31 20 13 - 22
Lang 15 11 7 19 13 11 - 11
Math 27 20 16 27 21 16 - 19
Mockito 7 4 4 6 4 6 - 4
Time 3 1 1 4 2 1 - 3
# Sum ‘ 80 63 36 18 63 98 70 52 76 67

“-”: indicates no results reported in the original work [61, 63].

(46.3%) than AlphaRepair with the perfect fault information pro-
vided, and auto-fix 17 (27%) and 62 (344.4%) more bugs than Codex
and GPT-NeoX with only method-level fault information provided,
respectively. As for QuixBugs, ThinkRepair obtains the best result
with the perfect and method-level fault information. As shown in
Table 3 and Table 4, BaseCodeLlama demonstrates relatively poor
bug-fixing capabilities. However, under our unsupervised setting,
CodeLlama (i.e., ThinkRepair®) can achieve performance on par
with or surpass supervised approach (i.e., AlphaRepair).

By observing Table 5, we find that with perfect fault information,
ThinkRepair outperforms AlphaRepair in all projects. In particu-
lar, the performance of ThinkRepair is significantly better than
AlphaRepair in three projects (Closure, Lang, and Math), with im-
provements ranging from 8 to 9 bugs (40.9%~72.7%).

Fig. 5 illustrates the Venn diagram depicting the bugs fixed by
ThinkRepair, BaseChatGPT, and AlphaRepair on Defects4] V1.2. It is
noteworthy that ThinkRepair successfully fixes 31 unique bugs that
BaseChatGPT and AlphaRepair are unable to resolve. Meanwhile,
BaseChatGPT can exclusively correctly fix four bugs (i.e., Closure-
61, Lang-53, Lang-57 and Mockito-12), which ThinkRepair fails to
fix. The reason may be attributed to ThinkRepair’s inclination to
excessively modify bugs stemming from over-inferring.

A specific example is Mockito-12, where ThinkRepair incor-
rectly revises the non-buggy line “if (generic != null && generic
instanceof ParameterizedType)” to “if (generic instanceof Parameter-
izedType” even though it has passed all test suites after adding the
“if (num.intValue() < 0)” and “else if (actual instanceof Parameterized-
Type)” condition. As a consequence, this modification results in
divergent semantics compared to the correct code repair.

Chart: 3 Chart: 2
ThinkRepair / Closure: 13 Closure: 7 AlphaRepair
Lang: 6 21 Lang: 2
‘Math: 6 Math: 5
Mockito: 1 Mockito: 1
Time:2 Time: 2
Total: 31 Total: 19
21 2

Closure: 1

Lang: 2

Mockito: 1

ot BaseChatGPT

Figure 5: RQ1: Bug-fixing Venn diagram on Defects4] V1.2 of
ThinkRepair, BaseChatGPT and AlphaRepair

To illustrate the effectiveness of ThinkRepair compared to Base-
ChatGPT, we present an instance of a bug (Mockito-29) in Defects4]
V1.2 that is exclusively fixed by ThinkRepair, as depicted in Fig. 6.
The bug causes an incorrect description generation when the vari-
able wanted is null. Both BaseChatGPT and ThinkRepair offer dis-
tinct solutions to resolve this bug. In this case, BaseChatGPT’s

solution mistakenly alters the line description.appendText("same(")
by substituting it with description.appendText("is "), causing a devia-
tion from the intended code functionality. Conversely, ThinkRepair
accurately recognizes the importance of preserving the original
line and concentrates on enhancing other segments of the code. It
introduces additional conditional statements to handle scenarios
where the wanted variable could be null, which guarantees proper
behavior of the code when wanted is not null and finally repairs
the bug with the conservation of intended functionality.

Test Name: NPEWithCertainMatchersTest ()

Cause: When wanted is null, it may cause a NullPointerException.

Thought Process: The bug in the describeTo function is that it is assuming that the wanted object has a to
String() method, which may not always be the case. This can result in a NullPointerException. To fix this,
we can check if wanted is null and handle it accordingly.

ThinkRepair BaseChatGPT
01 [public void describeTo(Description description) { | 01 |public void describeTo(Description description) {
02| description.appendText("same("); 02| — description.append Text("same(");
03| appendQuoting(description); 03| + description.appendText("is ");
04| +if (wanted != null) { 04| appendQuoting(description);
05 description.appendText(wanted.toString()); |05| description.appendText(wanted.toString());
06| + } else { 06| — appendQuoting(description);
07|+ description.appendText("null"); 07| — description.appendText(")");
08 +} 08|}
09| appendQuoting(description);
10| description.appendText(")");
11}

Figure 6: RQ1: Unique bug fixed by ThinkRepair on Defects4]

Answer to RQ-1: The Basic LLMs have limited ability to fix bugs
and ThinkRepair can improve it with suitable adaptions. Overall,
ThinkRepair performs better than LLM-based APRs which indicates
the priority by properly knowledge collection, combining few-shot
selection as well as interaction feedback.

5.2 RQ-2: Compare with NMT-based APRs

RQ2-Analysis Procedure. We compare ThinkRepair with 8 NMT-
based SOTA baselines: KNOD [20], TENURE [44], SelfAPR [64],
RewardRepair [65], CURE [21], DeepDebug [11], CoCoNuT [40],
and DLFix [29]. Benefiting from the powerful learning capability
of deep neural networks, these NMT-based SOTAs have also been
verified for their effectiveness on bug-fixing tasks.

Data Splitting, Fault Information and Experiment Settings.
Like RQ-1, we use Defects4] and Quixbugs datasets and consider the
same data splitting. Following previous works [11, 20, 21, 29, 40, 44,
64, 65], we directly adopt the results from the original papers when
the perfect fault information is provided. This comparison setting is
the preferred or the only one for comparing recent NMT-based APRs
as it removes the influence of other factors, such as fault localization,
thus showing the pure potential of different approaches [62]. We
also focus on single function bug-fixing scenarios and use the same
evaluation settings (e.g., Contrastive-based Selection for few-shot
selection and five interaction feedbacks).
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Table 6: RQ2: ThinkRepair vs. NMT-based APRs with the perfect fault information provided on Defects4] V1.2

Projects ThinkRepair ThinkRepair* KNOD TENURE SelfAPR RewardRepair CURE CoCoNuT DLFix DeepDebug
Chart 11 6 9 6 7 5 9 6 5
Closure 31 19 22 21 16 15 13 8 10
Lang 19 16 11 12 10 7 9 7 7
Math 27 22 18 16 18 18 16 12 12
Mockito 6 5 5 3 2 2 4 4 1
Time 4 2 2 3 3 1 1 1 2
# Sum 98 70 67 61 56 48 52 38 37

“-”: indicates no results reported in the original work [11].

RQ2-Results. Table 6 shows that ThinkRepair can outperform
the studied 8 state-of-the-art NMT-based APR approaches
on Defects4] V1.2. With the perfect fault information, ThinkRe-
pair achieves the best overall performance with a total of 98 bug
fixes, representing a significant improvement over the NMT-based
baselines, in the range of 46.3% (67 of KNOD)~164.9% (37 of DLFix).
In addition, ThinkRepair performs the best in all six projects with
improvements ranging from 1 to 9 bugs, which indicates the su-
periority of our proposed approach. On the open-source LLM (i.e.,
CodeLlama), ThinkRepair* outperforms supervised APRs. Specifi-
cally, ThinkRepair* fixes 3~33 more bugs than the SOTA APRs.

Furthermore, ThinkRepair generates far fewer patches (< 125 in
total per bug) than the NMT-based approaches that may generate
up to 10,000 patches per bug [21, 40], which indicates ThinkRepair
can also ensure a good efficiency.

We draw a Venn diagram to further illustrate the performance dif-
ference on bug-fixing. For a better presentation, we independently
illustrate the Top-3 best baselines (i.e., KNOD, TENURE and Self-
APR) on the basis of the number of correctly fixed bugs and divide
the rest methods into one group named “Other” for easy reference.
As for the “Other” group, we union all distinct correctly fixed bugs
by the rest methods for comparison. Fig. 7 shows the illustrated
results and we can also obtain two observations: (1) Individual ap-
proaches have varying capabilities of fixing bugs and each of them
can fix some specific bugs that other approaches cannot address.
Therefore, to some extent, these methods have a complementary
performance. (2) Overall, ThinkRepair has a more powerful ability
than baselines since it can auto-fix the most number of unique bugs
(i-e., 32) that other baselines can hardly fix.

KNOD
2 TENURE
1 4
g 1
5
1
23
3 00
9 2 4
3 3
Other 2 3 SelfAPR

Figure 7: RQ2: Bug-fixing Venn diagram on Defects4] V1.2 of
ThinkRepair and all studied NMT-based APRs

Case Study. To further understand why ThinkRepair has an
outstanding performance in fixing unique bugs, we further analyze
one example (i.e., Math-69 in Defects4] V1.2) as a case study in
Fig. 8. The function calculates a matrix of p-values of a 2-sided,
2-sample t-test. The bug is caused by a precision error when the
function call is extremely close to 1. This is a hard-to-fix bug since

the change is quite subtle and it does not fit any of the common
templates used in traditional APRs. To generate the correct patch,
ThinkRepair needs to understand the goal of the function (i.e., p-
value calculation) and correctly use statistical formulas. As shown
in Fig. 8, ThinkRepair undergoes two attempts (i.e., marked as
“Round 1” and “Round 2”), and the “Thought Process” reveals how
ThinkRepair thinks to solve this bug. Specifically, the first attempt
(i.e., Lines 13-14) modifies the buggy lines (i.e., Lines 11-12) to
“tDistribution.cumulativeProbability(-t) * 2” while overlooking the
necessity of using the absolute value of the t-value. In the second
attempt (i.e., Lines 15-16), ThinkRepair comprehends the semantics
gleaned from the test failure message and thereby successfully fixes
the bug. This example further exemplifies the capability of ThinkRe-
pair to leverage previously overlooked semantic information within
failing tests to directly guide the repair process.

Test Name:

testPValueNearZero ()
Interaction Number: 2

Cause:

Precision error when the function
call is extremely close to 1.

Thought Process:

1. The calculation of the p-value itself is incorrect, as it uses 1 - tDistribu
tion.cumulativeProbability(t)" instead of "tDistribution.cumulativeProbab
ility(-t) * 2*, which properly accounts for both tails of the t-distribution.
2. The p-value calculation should use the absolute value of the t-value to
compute the cumulative probability of the t-distribution.

01 |public RealMatrix getCorrelationPValues() throws MathException {

02 TDistribution tDistribution = new TDistributionImpl(nObs - 2);

03 int nVars = correlationMatrix.getColumnDimension();

04 double[][] out = new double[nVars][nVars];

05 for (int i =0; i <nVars; i++) {

06 for (int j = 0; j < nVars; j++) {

07 if (i =) {

08 out[i][j] = 0d;

09 } else {

10 double r = correlationMatrix.getEntry(i, j);

1= a double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * 1)));
12|~ BuggyLine; /i1 =2 * (1 - tDistribution.cumulativeProbability(t));
131+ Round 1 double t =r * Math.sqrt((nObs - 2)/(1 - r * r));

14+ out[i][j] = tDistribution.cumulativeProbability(-t) * 2;

15/ + Round 2 double t = r * Math.sqrt((nObs - 2)/(1 - 1 * r));

16| + out[i][j] = 2 * tDistribution.cumulativeProbability(-Math.abs(t));
17 }

18 }

19 }

20 return new BlockRealMatrix(out);

210}

Figure 8: RQ2: Unique bug fixed in Defects4] V1.2

Table 7 shows that compared with the NMT-based APRs, ThinkRe-
pair can achieve the best performance on Defects4] V2.0, QuixBugs-
Java, and QuixBugs-Python, similar to the findings obtained De-
fects4] V1.2. ThinkRepair can auto-fix 107 bugs on Defects4] V2.0,
with 60~65 (127.7%~154.8%) more bugs than the current state-of-
the-art NMT-based APRs. Furthermore, ThinkRepair® fixes 72 bugs
and improves baselines by 53.2%~71.4%. Additionally, ThinkRepair
has improved NMT-based baselines by fixing 14~26 more bugs on
QuixBugs-Java and 19~21 bugs on QuixBugs-Python.

Answer to RQ-2: All APR approaches have complementary ad-
vantages in fixing different bugs. Overall, ThinkRepair outperforms
NMT-based approaches in terms of the number of auto-fixed bugs.
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Table 7: RQ2: ThinkRepair vs. NMT-based APRs with perfect
fault information provided on the other three datasets

Defects4] QuixBugs
Models
V2.0 (228 bugs) Java (40 bugs) Python (40 bugs)

KNOD 47 25 -
TENURE 43 -

SelfAPR 42 - -
RewardRepair 44 20 -
CURE - 21 -
DeepDebug - - 21
CoCoNuT - 13 19
DLFix - - -
ThinkRepair* 72 38 38
ThinkRepair 107 39 40

“-”: indicates no results reported in the original work.

5.3 RQ-3: Configurations of ThinkRepair
RQ3-Analysis Procedure. ThinkRepair has two important com-

ponents: @ CoT few-shot learning (knowledge collection +
few-shot selection) prompts LLM to construct a chain of thought
pool and selects diverse and effective examples for LLM to better
understand the downstream task with few-shot learning, and @ in-
teraction feedback provides feedback to LLM with the test failure
information interactively during the process of function verifica-
tion. Therefore, in this RQ, we aim to conduct a comprehensive
experiment to evaluate the impact of different components on the
ThinkRepair’s performance. Furthermore, we study the impact of
the number of interactions with LLM and the impact of the four
few-shot selection strategies on the performance of ThinkRepair.

Data Splitting and Fault Information. In this RQ, we utilized
ChatGPT as the backend LLM. Considering the cost of invoking the
ChatGPT API multiple times for this ablation study, we concentrate
our experiments on Defects4] V1.2, which has the most number of
single function bugs (i.e., 255) among our studied datasets. Also, we
only provide ThinkRepair with the method-level fault information
but no statement-level fault information.

Experiment Settings. As for the interaction number, the max-
imum interaction number (cf. Section 3.2) dictates the amount of
history/feedback within each individual repair query. Therefore,
when interacting once, it is equivalent to directly using the initial
prompt without any feedback for ThinkRepair. We treat the origi-
nal ChatGPT as the basic model for comparison and investigate its
initial performance in the zero-shot learning setting and few-shot
learning setting. Zero-Shot means that we directly prompt ChatGPT
to fix a bug without providing any other information. Few-Shot
means that we provide ChatGPT with two examples of fixes but do
not include CoT information (i.e., directly using existing bug-fixing
data as examples). Moreover, “knowledge collection” is a preparation
step for “few-shot selection” when fixing bugs. Therefore, the two
parts are used together. We build a variant of ThinkRepair without
interaction feedback as ThinkRepair-v1 and another variant with-
out CoT few-shot learning as ThinkRepair-v2. All of our ablation
experiments utilize the default settings outlined in Section 4.3.
RQ3-Results. Impacts of Components. According to the results
in Table 8, we can observe that: (1) In few-shot, ChatGPT exhibits
better bug-fixing performance compared to zero-shot, but the per-
formance improvement is limited (i.e., 34—36). (2) Two components
have their own advantages in a single-function bug-fixing scenario,
achieving a varying performance and significantly improving the
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Table 8: RQ3: The performance difference among different
components

. : %
Models CoT Few-Shot Interaction Correct

Learning Feedback Fixes
Zero-Shot X X 34
Few-Shot X X 36
ThinkRepair-v1 4 X 57
ThinkRepair-v2 X 4 62
ThinkRepair 4 v 80

performance of ChatGPT. Both of them can contribute to the per-
formance of ThinkRepair. (3) The combination between “Knowledge
Collection” and “Few-Shot Selection” is effective for ThinkRepair,
which improves ChatGPT a lot (i.e., 36—57) and emphasizes the
importance of prompting ChatGPT by selecting high-quality of
examples. (4) The “Interaction Feedback” seems to contribute the
performance of ThinkRepair, which brings ChatGPT with a large
improvement (i.e., 36—62). It indicates that the information ob-
tained from test failures can help ChatGPT understand the reasons
for failures and provide guidance for generating plausible fixes. (5)
A combination of these two components can improve ChatGPT.
ThinkRepair is capable of generating 44 more correct fixes than
ChatGPT with a few-shot setting (i.e., 36—80).

Impacts of Interaction Number. According to the results in
Fig. 9, we observe that: (1) Different interaction numbers have vary-
ing impacts on ThinkRepair’s performance and the performance of
ThinkRepair increases as the number of interactions increases. (2)
Sampling directly from the ChatGPT (i.e., interact once) may not
ensure a good performance. For example, when directly interacting
with ChatGPT without information feedback, ThinkRepair achieves
the lowest number of correct fixes (i.e., 57). (3) Feedback informa-
tion promotes ChatGPT to reason, but more interaction times may
not guarantee additional performance improvement. Notice that
ThinkRepair has a big improvement when interacting twice with
ChatGPT (i.e., 57—75). However, when continuously increasing
the number of interactions, the rate of performance improvement
decreases (i.e., 75—80) and meanwhile, the interaction cost with
ChatGPT is increasing. Considering both the performance improve-
ment and the communication cost caused by ChatGPT, we adopt
five times of interactions as the default setting.

Table 9: RQ3: The performance difference among four differ-
ent few-shot selection strategies

Datasets CSelect SSelect ISelect RSelect
Defects4] V1.2 (255 bugs) 80 73 70 68
Defects4] V2.0 (228 bugs) 90 84 78 77
QuixBugs-Java (40 bugs) 39 38 38 38
QuixBugs-Python (40 bugs) 40 40 39 39
# Sum 249 235 225 222

“CSelect”: Contrastive-based Selection, “SSelect”: Semantic-based Selection,
“ISelect”: IR-based Selection, “RSelect”: Randomly Selection.

Impacts of Few-Shot Selection Strategy. According to the re-
sults in Table 9, we observe that: (1) Both Contrastive-based Selection
and Semantic-based Selection help to generate more correct fixes
than IR-based Selection and Randomly Selection, which indicates the
importance of the semantic similarity among samples. Particularly,
Contrastive-based Selection and Semantic-based Selection can help
ThinkRepair fix 27 and 13 more bugs than does Randomly Selection
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help, respectively. (2) Overall, Contrastive-based Selection performs
the best and shows promising results in selecting high-quality ex-
amples, which may benefit from the well-trained semantic encoder
(i-e., UniXcoder) fine-tuned with contrastive learning.

80 1 —— ThinkRepair
7

75 1
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L

Correct Patch
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Figure 9: RQ3: The varying performance of ThinkRepair with
different interaction number

We also discuss the cost of different selection strategies. It has
some difference in time cost. On average, both Semantic-based Se-
lection and Contrastive-based Selection strategies take about 0.01
seconds to embed a function, while IR-based Selection and Randomly
Selection strategies take 0.9 milliseconds. However, considering that
a repair process is mainly consumed in the output of the LLM
(which usually takes several seconds), the time cost of selection is
negligible. Therefore, to strike a balance between efficiency and
effectiveness, we adopt Contrastive-based Selection as default.

Answer to RQ-3: (1) The two components (i.e., CoT few-shot learn-
ing and interaction feedback) contribute substantially to ThinkRe-
pair, and combining them achieves the best performance. (2) In-
creasing the interaction number (e.g., from 1 to 5) can signifi-
cantly improve the performance of ThinkRepair, but more interac-
tions may not gain larger performance improvement. (3) Seman-
tically similarity-based example selection strategies can pick out
high-quality examples for ThinkRepair than random selection and
Contrastive-based Selection is the best choice.

6 Discussion

This section discusses open questions regarding the data leakage
and threads to the validity of ThinkRepair.

6.1 Evaluation of Data Leakage

6.1.1 Similarity between generated patches and the ground-truth.
We follow the work [62] and initially calculate the number of correct
patches, which lexically matches the ground-truth in Defects4] V1.2.
We find that out of 98 correct patches, 24 of them lexically match the
ground-truth (24.5%), while the other patches semantically match
the ground-truth. We exemplify with Fig 8, the ground-truth fix is
“double t = Math.abs(r * Math.sqrt(nObs - 2)/(1 - r * r))); out[i][j] = 2
* tDistribution.cumulativeProbability(-t);”. Our ThinkRepair gener-
ates a fix that is different from the ground-truth but semantically
equivalent, namely “double t = r * Math.sqrt((nObs - 2)/(1-r *r));
out[i][j] = 2 * tDistribution.cumulativeProbability(-Math.abs(t));”.
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6.1.2  Study on Real-World Projects. We follow Defects4] and col-
lect bug-fixing commits from high-quality open-source projects
included in Defects4]. The resulting dataset is referred to as RWB
(Real-World Bugs). We evaluate data leakage on both ChatGPT
and DeepSeek, denoting them as ThinkRepair and ThinkRepair®,
respectively. Notice that the pre-training data for ChatGPT was
collected before September 2021 [47], while the pre-training data
for DeepSeek was collected from GitHub before February 2023 [3].
Consequently, we collected two datasets to assess data leakage. The
first dataset (RWB V1.0) comprises bug-fixing commits after Octo-
ber 2021, while the second dataset (RWB V2.0) includes bug-fixing
commits after March 2023, resulting 113 and 61 bugs, respectively.

Since ThinkRepair focuses on single-function bugs, we perform
two steps on the original datasets to obtain valid functions:

Step-1: Each commit is considered a mini-version of a project.
We use the commit IDs to request commit histories of the projects,
and for each commit, we extract the code changes between before
and after fixing a bug. Finally, we use the code change information
to obtain the buggy and fixed version of a function.

Step-2: To clean and normalize the dataset, we keep only single-
function bugs. In this step, we finally obtain the RWB V1.0 dataset,
which comprises 44 single-function bugs (4 of Cli, 5 of Codec, 1 of
Collections, 8 of Compress, 2 of Csv, 6 of Lang, and 18 of Jsoup), and
the RWB V2.0 dataset, which comprises 29 single-function bugs (4
of Cli, 4 of Codec, 4 of Compress, 6 of Lang, and 11 of Jsoup).

Finally, we conducted a comparative analysis on ThinkRepair and
AlphaRepair with perfect fault information, and AlphaRepair was
identified as the baseline with the best performance (cf. Section 5.1).
Table 10 presents the results of ThinkRepair on RWB. According to
the results, we can conclude that ThinkRepair possesses the abil-
ity to fix bugs in real-world projects, not just limited to the bugs
present in the Defects4] dataset and QuixBugs dataset. Furthermore,
both ThinkRepair and ThinkRepair* outperform AlphaRepair, un-
derscoring the practicality and viability of our approach.

In summary, we believe that data leakage will not significantly
affect the performance of our ThinkRepair.

Table 10: ThinkRepair vs. AlphaRepair on RWB

| RWB V1.0 (44 bugs) | RWB V2.0 (29 bugs)
Projects N N N N N N

‘ ThinkRepair AlphaRepair ‘ ThinkRepair* AlphaRepair
Cli 4 3 4 3
Codec 3 1 1 1
Collections 1 0 - -
Compress 1 1 °
Csv 1 0 = -
Lang 3 2 8 1
Jsoup 6 2 2 1
#Sum | 19 9 | 10 6

6.2 Threats to Validity

Internal Validity. The first internal threat arises from the manual
validation employed to determine the correctness of the plausible
patches. To mitigate this concern, we conduct a thorough examina-
tion and comprehensive discussion of each patch, following prior
work [21, 61, 62, 64, 65, 67]. The second one comes from potential
data leakage since referenced developer patches may be part of the
training data of LLM. As discussed in section 6.1.1, 24.5% of correct
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patches aligned with the reference developer fix. Moreover, even
after excluding all the correct patches (24) that aligned with the ref-
erence developer patch, ThinkRepair is still capable of generating
the correct patch for 29 unique bugs, none of which could be fixed
by any previous methods. Additionally, compared to BaseChatGPT,
ThinkRepair achieves 46 more correct fixes. This demonstrates that
the improved results achieved by ThinkRepair are not merely a
result of memorizing the training data. We also collected bugs from
real-world projects to evaluate data leakage. ThinkRepair can fix 19
out of 44 bugs on RWB V1.0, and 10 out of 29 bugs on RWB V2.0.
External Validity. The effectiveness observed in ThinkRepair’s
performance may not be applicable across different repair datasets.
We conduct evaluations not only on the widely-used Defects4]
dataset but also on QuixBugs dataset. This broader evaluation scope
aims to showcase the generalizability of our approach.

7 Related Work

7.1 Large Language Model

Large Language Models (LLMs) [6] have been widely adopted since
the advances in Natural Language Processing (NLP) which enable
LLM to be well-trained with both billions of parameters and billions
of training samples, and consequently, they bring a large perfor-
mance improvement. LLMs can be easily used for a downstream
task by being fine-tuned [51] or being prompted [37] since they
are trained to be general and they can capture different knowledge
from various domain data. Fine-tuning is used to update model
parameters for a particular downstream task by iterating the model
on a specific dataset. Meanwhile, prompting can also be directly
used by providing natural language descriptions or a few examples
of the downstream task. Compared to prompting, fine-tuning is
expensive since it requires additional model training and has lim-
ited usage scenarios, especially in cases where sufficient training
datasets are unavailable.

ChatGPT [47] is a successor of InstructGPT [48] and is fine-tuned
with the Reinforcement Learning with Human Feedback (RLHF)
approach [9, 48, 68]. RLHF first fine-tunes the model with the in-
put (i.e., a small dataset of prompts) and the desired output (i.e.,
usually human-written). Following that, a reward model will be
trained on a larger set of prompts by sampling a few outputs that
are generated by the fine-tuned model and these outputs are re-
ordered by humans. Finally, reinforcement learning [54] is adopted
to calculate the reward of each output that is generated based on
the reward model and eventually updates the LLM parameters ac-
cordingly. Benefiting from fine-tuning as well as human preference
alignments, LLM has a better understanding of input prompts and
instructions to perform better on various downstream tasks [4, 48].

7.2 Automated Program Repair

Automated Program Repair (APR) can assist developers in gener-
ating patches for specific bugs based on their potential fault loca-
tions. Traditional APR techniques can be classified into heuristic-
based [25, 26, 59], constraint-based [10, 24, 38, 43] and template-
based [15, 19, 35, 36, 42] approaches. Template-based APR tools
have gained recognition as state-of-the-art due to their ability to
fix a large number of bugs. These tools utilize human-defined or
automatically-mined templates to identify potential buggy code
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patterns and apply corresponding fixes. However, template-based
tools are limited to the patterns within their predefined set and lack
the ability to generalize to other types of bugs or fixes. To address
this limitation, researchers have proposed learning-based APR tech-
niques by leveraging recent advancements in Deep Learning. Tech-
niques based on Neural Machine Translation (NMT) have been ex-
tensively studied in recent years [11, 20, 21, 29-31, 40, 44, 64, 65, 67]
and they treated APR as an NMT problem that is translating buggy
code into correct code. However, these methods heavily rely on
historical bug-fixing data and noise may impact their performance.
In order to overcome the limitations of NMT-based tools, re-
searchers have explored the potential of utilizing LLMs directly to
generate correct patches. By pre-training on large amounts of open-
source code snippets, LLMs have the ability to generate correct code
directly based on the surrounding context, eliminating the need for
translation from the buggy code. AlphaRepair [62] is the first tool
for cloze-style APR and its performance indicates that LLM-based
APR outperforms the widely studied NMT-based APR techniques
in real-world systems. Following that, researchers [23, 50] directly
adopt Codex to generate a fixed function based on a buggy one.
Recently, Xia et al. [61] conducted an extensive study of LLM-based
APR techniques using various LLMs [5, 8, 14, 57] and their results
further demonstrated the superiority of LLM-based APR. ChatRe-
pair [63] simply uses the chat capability of ChatGPT and iteratively
enters test information to obtain the final patch. However, the ca-
pabilities of LLMs are influenced by high-quality prompts. In this
paper, we propose a self-directed framework, ThinkRepair. The
objective of ThinkRepair is to enable the LLM to engage in self-
reflection to construct a high-quality knowledge pool, and select
few-shot examples from the knowledge pool to better guide LLM.

8 Conclusion

This paper proposes a novel approach ThinkRepair, which is a
single function APR tool. ThinkRepair has two main phases: the
collection phase and the fixing phase. The former phase adopts
knowledge collection to generate a series of thought processes that
provide high-quality examples for subsequent phases. The latter
phase targets fixing a bug by first selecting examples for few-shot
learning and second automatically interacting with LLM, option-
ally appending with feedback of testing information. Through this
repair paradigm, ThinkRepair has strong analytical and reasoning
abilities and is capable enough to repair complex bugs. Therefore,
ThinkRepair achieves state-of-the-art performance on both De-
fects4] V1.2 and Defects4] V2.0, surpassing the baselines by 17~62
and 12~65 more bugs, respectively.

9 Data Availability
The replication of this paper is publicly available [2].
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