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Abstract—Large Language Models (LLMs) have become a
focal point of research across various domains, including software
engineering, where their capabilities are increasingly leveraged.
Recent studies have explored the integration of LLMs into
software development tools and frameworks, revealing their
potential to enhance performance in text and code-related tasks.
Log level is a key part of a logging statement that allows
software developers control the information recorded during
system runtime. Given that log messages often mix natural
language with code-like variables, LLMs’ language translation
abilities could be applied to determine the suitable verbosity level
for logging statements. In this paper, we undertake a detailed
empirical analysis to investigate the impact of characteristics and
learning paradigms on the performance of 12 open-source LLMs
in log level suggestion. We opted for open-source models because
they enable us to utilize in-house code while effectively protecting
sensitive information and maintaining data security. We examine
several prompting strategies, including Zero-shot, Few-shot, and
fine-tuning techniques, across different LLMs to identify the most
effective combinations for accurate log level suggestions. Our
research is supported by experiments conducted on 9 large-scale
Java systems. The results indicate that although smaller LLMs
can perform effectively with appropriate instruction and suitable
techniques, there is still considerable potential for improvement
in their ability to suggest log levels.

I. INTRODUCTION

Logs are invaluable for tracking system runtime behavior.
Logs contribute to software quality assurance by monitoring
system performance and reliability [1], [2], debugging [3], [4],
failure diagnosis [5], [6], program comprehension [7], [8], [9],
[10], and anomaly detection [11], [12]. As an example, the
logging statement LOG.debug("Task FINISHED, but
concurrently went to state " + state); is at
the “debug” level and contains the log message “Task FIN-
ISHED, but concurrently went to state”, and records the value
for the state variable. Such logging statements capture
important runtime information for later analysis.

Despite their importance, the massive volume of logs
generated by modern software systems, often reaching tens
of gigabytes or even terabytes daily [13], [14], [15], poses
significant challenges in log management and analysis, poten-
tially bottlenecking quality assurance processes. To facilitate
log management, verbosity levels (e.g., trace, debug, info,
warn, and error) are employed to indicate the urgency and
prioritization of log analysis. Logs can also be wrapped in log

guards, such as isDebugEnabled or isErrorEnabled,
which optimize performance by verifying whether specific
logging levels are enabled before generating log messages.

However, selecting appropriate verbosity levels in logging
statements can be challenging due to a limited understanding
of system runtime behaviors [16], [17]. This often leads
to incorrect log-level assignments, influenced by subjective
interpretations or human error [16]. Such misclassifications
can result in critical messages being overlooked or trivial
events being misrepresented, complicating log management
and analysis efforts [18], [16] and imposing additional over-
head on these processes [16], [19]. Tools like GitHub Copilot,
which are powered by large language models (LLMs), offer
a potential solution to mitigate these challenges by providing
automated code improvement and competition, including log
level suggestions [20]. Yet, despite the usefulness of these
tools, companies such as Apple, Samsung, and Amazon have
banned the use of AI tools powered by Large Language Mod-
els (LLMs) due to concerns about compromising proprietary
code or sensitive information [21], [22].

In this paper, we conducted a comprehensive empirical
evaluation of various open-source LLMs. Our focus on open-
source models stems from the desire to enable users to
leverage LLMs without concerns about data privacy. Given
that log levels are essential for code improvement, we use
log level suggestions as a key task to assess the performance
of these models. We evaluated models of different sizes and
architectures, including general-purpose language models like
BERT and RoBERTa, as well as code-specific models such as
CodeBERT and GraphCodeBERT.

For the experiment, we used a benchmark dataset of logging
statements from nine large-scale, open-source Java systems.
These systems span various domains and represent real-world
projects, making them suitable for examining logging practices
and log level predictions. We evaluated each LLM under
zero-shot, few-shot, and fine-tuning paradigms to assess their
effectiveness in suggesting appropriate verbosity levels (e.g.,
debug, info, warn, error) for log statements.

We first preprocessed the dataset to extract logging state-
ments alongside their corresponding source code, isolating
the relevant code segments and log messages for each event.
Then, we created prompts for the LLMs that included both



the log message and the surrounding code context, aiming
to simulate real-world logging scenarios faced by developers.
Following prior studies [23], [24], we use Accuracy, Area
Under the Curve (AUC), and Average Ordinal Distance Score
(AOD), to assess the performance of LLMs in suggesting log
levels. We also explored how incorporating additional context,
such as calling methods, influenced the model’s accuracy in
log level predictions. This experimental setup enabled us to
benchmark both small and large models, providing insights
into how model size, fine-tuning, and contextual information
affect performance in practical software logging tasks. In
summary, the contributions of our paper are as follows1:

• We discover that Fill-Mask models such as GraphCode-
BERT, when fine-tuned, can outperform larger models in
log level suggestions. Fine-tuning using task-specific data
leads to substantial improvements in accuracy and makes
these models competitive with state-of-the-art methods.

• We identify the impact of additional context, such as
including the source code of calling methods, on LLM
performance, noting that it can decrease accuracy and
increase invalid outputs. The finding shows that adding
undistilled information may negatively influence model
output.

• We highlight the critical role of task-specific data in op-
timizing LLMs and show that Text Generation LLMs are
more effective when such data is unavailable. This lays
the groundwork for future research focused on enhancing
LLMs for code-related tasks.

Paper organization. Section II introduces the background and
related works to our study. Section III describes the overall
design of our study. Section IV presents the study results.
Section V offers actionable insights and suggestions for fu-
ture directions. Section VI discusses the threats to validity.
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the background and related work
of our study.

A. Logging

Log Level Suggestion. Prior works have investigated log-
level suggestions using various machine learning and deep
learning techniques [26], [23], [27], [24]. Li et al. [26] utilized
the ordinal regression machine learning model to recommend
appropriate log levels for logging statements. Ouatiti et al. [27]
uses ordinal regression model and focuses on the performance
of the log level suggestion that is trained separately multi-
component software systems and their components. Li et
al. [23] uses Ordinal Based Neural Networks to analyze
syntactic context and message features of logging statements
in order to suggest log levels. Liu et al. [24] applied graph
neural networks to encode intra-block and inter-block features
into code block representations, guiding log level suggestions.

1Our replication package is available at [25].

In contrast, our study uses open-source LLMs for log level
suggestion to examine how different attributes and learning
paradigms influence model performance. This approach makes
use of readily available technology and offers insights into
how various LLM characteristics and learning strategies can
be effectively applied to log level suggestion.

Logging Statement Generation with LLMs. Some studies
have explored logging statement generation using LLMs. For
instance, Li et al. [28] proposed incorporating static context
into code prompts using a self-refinement approach based on
chain-of-thought (COT) prompts derived from static analysis.
Xu et al. [29] utilized Codex, a fine-tuned GPT language
model [30], to generate logging statements, examining both
In-Context Learning and fine-tuning approaches. Unlike our
approach, which utilizes open-source language models, Xu et
al. [29] employed several models from the GPT-3 series for
comparison purposes. Another close work to our study is by
Li et al. [31], where they conducted an empirical study on the
ability of LLM in logging statement generation by creating a
dataset of unseen code, selected 11 general-purpose, logging-
specific, and code-based LLMs, and used prompt instruction
on the LLMs to generate result. While their study covered the
In-Context Learning paradigm, it did not include fine-tuning.

While prior research has focused on automatically generat-
ing logging statements and integrating LLM-based tools into
software development, our study benchmarks LLMs for log
level suggestions. We examine how model size, task types,
and learning paradigms influence outcomes. Our findings
shed light on improving log level suggestions and lay the
groundwork for future studies to enhance code quality through
LLMs.

B. Large Language Models

In recent years, advancements in natural language process-
ing (NLP) have been transforming various fields, including
software engineering. This transformation highlights the im-
portance of LLMs in code-related work and their significance
in coding tasks [32], [33], [34], [35], which are essential
for enhancing artificial intelligence in software engineering
(AI4SE). Recent research has extensively explored the integra-
tion of LLMs into software engineering tools and processes
to enhance development practices and advance both academic
and industry applications. Studies have examined how LLMs
improve tasks such as logging statement generation [28], [29],
[30] and log parsing [36], [37]. Despite these advancements,
several areas remain unclear and warrant further investigation:

1) Characteristics of LLMs: The effectiveness of various
LLMs in performing specific tasks remains an area of active
research. The following characteristics of LLMs contribute to
their performance and influence how well they can handle
different applications:

Task Types. Text Generation models, like those trained with
autoregressive techniques (e.g., LLaMA 2), excel in generating
coherent and contextually relevant text by modeling long-range
dependencies and ensuring sequential consistency from given



prompts [38]. In contrast, Fill-Mask models like BERT and
RoBERTa are trained by masking random tokens in a sentence
and predicting them based on both left and right context. This
bidirectional approach helps the model leverage context from
both directions, making them particularly effective for tasks
requiring deep contextual understanding [39], [40].
Parameter Sizes. The size of an LLM, indicated by the num-
ber of parameters, affects its capacity to learn and generalize.
Larger models often have more expressive power but require
more computational resources [41].
Pre-training Objectives. NLP-based LLMs are trained on
natural language text and are designed to perform a variety
of language tasks, including question-answering, translation,
summarization, and text generation. Code-based LLMs are
specifically trained on programming languages and are tai-
lored to understand and generate code [42], [43]. However,
some code LLMs, such as CodeLlama, are fine-tuned from
LLaMA2, a NLP-based language model, rather than being
trained exclusively on code. This fine-tuning process adapts
the base model to better handle code-specific tasks [44].

2) Learning Paradigms of LLMs: LLMs are highly adapt-
able due to their ability to leverage transfer learning, which
enables them to apply pre-trained knowledge across various
tasks. However, they may still face difficulties with certain
tasks because of limited domain knowledge. To further tai-
lor LLMs for more context-specific tasks, two key learning
paradigms are commonly employed:
In-Context Learning. In-Context Learning (ICL) is a method
where an LLM is provided with a prompt that includes
detailed instructions, task-specific demonstrations, or both.
This enables the model to adjust its responses to the new task
based on the provided context, without altering its underly-
ing parameters. By leveraging its pre-trained knowledge, the
model generates responses based on the provided context [45],
[46]. However, ICL has limitations. The model’s context size
limits the number of examples that can be included, which
may reduce its effectiveness. Additionally, processing multiple
examples can increase computational and financial costs due to
increased input tokens [41], leading to longer inference times.
Fine-tuning. In fine-tuning, a LLM undergoes a secondary
training phase on a more specific dataset related to a particular
task or domain [47], [48]. This process involves adjusting
the model’s parameters based on the new data, which en-
hances the model’s performance on tasks relevant to the
fine-tuning dataset. However, fine-tuning LLMs can be time-
consuming because it involves updating full parameters. To
address this, recent techniques have been introduced that only
adjust additional parameters, thereby accelerating the fine-
tuning process. Techniques like LoRA (Low-Rank Adaptation)
can be used during fine-tuning to efficiently adapt pre-trained
models by introducing low-rank matrices into the network,
which helps manage the computational cost while preserving
model performance [49]. Unlike in-context learning, which
temporarily adjusts the model based on the input, fine-tuning
changes the model’s behavior and knowledge.

TABLE I: An overview of the log level distribution across nine
large scale systems.
System Version LOC NOL Trace Debug Info Warn Error Fatal

Cassandra 3.11.4 432K 1.3K 16.7% 10.9% 15.8% 16.8% 39.8% 0.0%
ElasticSearch 7.4.0 1.50M 2.5K 28.5% 32.4% 10.0% 19.2% 9.9% 0.0%
Flink 1.8.2 177K 2.5K 1.0% 30.8% 26.6% 23.7% 17.9% 0.0%
HBase 2.2.1 1.26M 5.5K 7.4% 17.3% 17.1% 24.4% 33.8% 0.0%
JMeter 5.3.0 143K 1.9K 0.7% 29.9% 16.9% 26.5% 26.0% 0.0%
Kafka 2.3.0 267K 1.5K 12.9% 28.5% 20.4% 15.3% 22.9% 0.0%
Karaf 4.2.9 133K 0.8K 0.9% 21.9% 23.1% 30.0% 23.6% 0.5%
Wicket 8.6.1 216K 0.4K 2.2% 39.3% 7.6% 28.5% 22.4% 0.0%
Zookeeper 3.5.6 97K 1.2K 2.2% 18.3% 19.3% 35.3% 24.9% 0.0%

Average —— 469K 2.0K 8.0% 25.5% 17.5% 24.5% 24.4% 0.1%

3) Privacy Concerns: LLM with sensitive data, such as
code, raises serious privacy concerns, especially with com-
mercial models like ChatGPT. For instance, Samsung recently
banned the use of ChatGPT among employees due to a
sensitive code leak, which highlighted concerns over data
security and interactions with proprietary information [22]. To
prevent these privacy concerns, our study utilizes open-sourced
LLMs. By choosing open-source models for local deployment,
we ensure data privacy and adherence to strict protection
standards, allowing us to explore the effective integration
of LLMs with in-house code while safeguarding sensitive
information and maintaining data security.

By focusing on log level suggestion, our study explores
under-examined areas in the application of LLMs, including
challenges related to model fine-tuning, comparisons between
traditional and LLM-based approaches, and privacy concerns.

III. STUDY DESIGN

A. Studied Dataset

Overview. We conduct the study on nine large-scale open-
source Java systems (Table I). We chose these systems because
they are actively maintained by the Apache Software Founda-
tion, well-documented, and cover a variety of domains from
database systems to search engines. They vary in size, with
Lines of Code (LOC) ranging from 97K to 1.5M and Number
of Logging Statements (NOL) ranging from 0.4K to 5.5K.
These systems have also been widely used in prior research
on logging [23], [24], [50], [51].

We analyzed the logging statements across all nine systems.
Table I shows the log level distribution across these different
systems. We observed that the primary use of logging state-
ments is to highlight potential issues during system execution,
with a notable distribution among the debug, info, warn, and
error levels. For example, 25.5% of the logging statements
belong to the debug level, 24.5% to the warn level, 24.4%
to the error level, and 17.5% to the info level. However,
we observed that fatal log levels are present in only one
of the nine systems studied (i.e., Karaf), accounting for less
than 1% of the total logging statements. As the fatal level
is considered obsolete in modern logging frameworks due to
its similarity to the error level, as stated in the SLF4J official
documentation [52], we excluded it from our study. Moreover,
the trace level has a lower occurrence: an average of 8.0% of
logging statements. Notably, projects such as Flink, JMeter,
Karaf, Wicket, and Zookeeper exhibit a negligible number of



Step  

Collect Logging Information

Gather log levels and messages.

private void 
handleStateBootstrap(InetAddress 
endpoint)
{
    Collection<Token> tokens;
    ...
    tokens = getTokensFor(endpoint);
    
    if (logger.isDebugEnabled())
        logger.debug("Node {} state 
bootstrapping, token {}", endpoint, 
tokens);
    ... 
    if 
(tokenMetadata.isMember(endpoint))
    {
        ...
        if 
(!tokenMetadata.isLeaving(endpoint))
            logger.info("Node {} state 
jump to bootstrap", endpoint);
        
tokenMetadata.removeEndpoint(endpoint);
        
    }
    ...
}

private void 
handleStateBootstrap(InetAddress 
endpoint)
{
    Collection<Token> tokens;
    ...
    tokens = getTokensFor(endpoint);
    
    

    if 
(tokenMetadata.isMember(endpoint))
    {
        ...
        if 
(!tokenMetadata.isLeaving(endpoint))

tokenMetadata.removeEndpoint(endpoint);
        
    }
    ...
}

Step 

Abstract Logging Statements

Remove logging statements from the 

source code.

Prompt #1:

Instruction: Between debug, warn, 

error, trace, info, which is the 

appropriate log level for this 

logging statement?

Input: The source code is 

{Processed Source Code #1}, and 

the log message is {Log Message

#1}.

Response: The log level is {Log 

Level #1}.

Step  

Identify Logging Context

Find 2 logging statements in the 

source code.

Step  

Construct Prompts

Include source code and log messages in 

the prompts for each logging statement.

Prompt #2：
Instruction: Between debug, warn, 

error, trace, info, which is the 

appropriate log level for this 

logging statement?

Input: The source code is 

{Processed Source Code #2}, and 

the log message is {Log Message

#2}.

Response: The log level is {Log 

Level #2}.

# Log Level Log Message

1 debug Node {} state bootstrapping, 
token {}

2 info Node {} state jump to 
bootstrap

Processed Source Code #1

Processed Source Code #2

Fig. 1: Outline of the data processing stage: 1⃝ Identify Logging Context: Locate methods with logging statements, 2⃝ Collect
Logging Information: Determine the log levels and messages, 3⃝ Abstract Logging Statements: Remove logging statements
and log guards from the source code, 4⃝ Construct Prompts: Create prompts for the LLM using the gathered information.

trace-level logging statements, ranging from 0.7% to 2.2%.
According to the SLF4J official documentation, the trace level
shares a similar semantic meaning with the debug level, which
may explain the lower occurrence of logging statements at the
trace level. In summary, debug, warn, and error collectively
constitute 75% of the logging statements.

The uneven distribution of log levels presents a significant
challenge in achieving accurate log level suggestion. The
disparity in frequency among different log levels means that
some levels are more common than others, which implies
that suggesting these more frequent levels might be simpler.
However, this approach fails to account for the challenge
of accurately identifying less frequent but still crucial log
levels. Therefore, while it may appear that focusing on the
most common log levels could improve suggestion accuracy,
addressing the imbalance and ensuring accurate suggestions
across all levels remains a complex and crucial task for
effective log level suggestion.
Data Collection. Figure 1 illustrates the structure of our data
preparation process for the log level suggestion. It consists of
four key components: 1 Identify Logging Context, 2 Collect
Logging Information, 3 Abstract Logging Statement, and 4

Construct Prompts.
1 Identify Logging Context. We used static analysis to

locate logging statements by traversing the abstract syntax
tree to find method invocations using widely used logging
libraries such as Log4j and SLF4J. This approach enables us
to identify the context in which logging occurs by retrieving
the calling method for each method containing a logging
statement. Understanding the calling method is crucial because
it helps us trace the source of the logging events, providing

insight into the broader execution context and potentially
identifying patterns or issues related to logging practices.

2 Collect Logging Information. After identifying methods
with logging statements, we extract and parse these statements
to gather relevant information. Specifically, we collect (1) the
log message and (2) the verbosity level. In our example, there
are two logging statements with different log level identified
in the method handleStateBootstrap. In total, we re-
trieved 17.6K logging statements from the nine systems.

3 Abstract Logging Statements. Our goal is to abstract log-
ging statements by not only removing the logging statements
but also excluding any code from basic blocks that follow
the one containing each logging statement. For each logging
statement, we extract the source code from the start of the
method up to the end of the basic block where the logging
statement is found. This approach ensures we consider only the
relevant part of the code, as basic blocks provide a continuous
sequence of statements without branching. As shown in Step
3 of Figure 1, Log Statement #2 is associated with a longer
segment of code because it is located further down in the
method, whereas Log Statement #1 is in a shorter block.

In addition to removing logging statements, we also elimi-
nate log guards, conditions that determine whether a log mes-
sage should be processed based on current logging settings.
We exclude all AST nodes related to log guards before sending
the code context to LLMs, a practice that prevents data leakage
and aligns with previous work [23], [24].

4 Construct Prompts. Prior studies [23], [24] have investi-
gated various feature combinations for suggesting log levels.
For instance, DeepLV [23] combines the syntactic context of



TABLE II: Language models used in our study.

Task Pre-training Model Name Parameter
Type Objective Size

Fill-Mask

NLP-based

BERT base 110M
BERT large 336M
RoBERTa base 125M
RoBERTa large 355M

Code-based

CodeBERTa 84M
CodeBERT 125M
codebert-java 125M
GraphCodeBERT 125M

Text Generation
NLP-based LLaMA 2 7B 7B

LLaMA 2 13B 13B

Code-based CodeLlama 7B 7B
CodeLlama 13B 13B

the logging statement with the log message content, while
TeLL [24] integrates multi-level block information with log
messages. Inspired by these methods, our study leverages
the strengths of combining diverse information sources. As
depicted in Step 4 of Figure 1, we have developed a prompt
template that incorporates two key features for input into the
LLMs: (1) Processed Source Code and (2) Log Message.

B. Selecting Large Language Models (LLMs)

We selected 12 open-source Large Language Models, as
enumerated in Table II, for our experimental purposes. These
models encompassing both NLP-based and Code-based mod-
els, vary in size, ranging from 84 million to 13 billion
parameters, and will all be executed using identical datasets
in III-A to examine the influence of both model size and type
on performance, eliminating the potential confounding factor
of using diverse training or testing data.

Fill-Mask Models. NLP-based Language Models like BERT
base, BERT large, RoBERTa base, and RoBERTa large are
chosen for examination to assess whether programming state-
ments can effectively extract semantic information. Specifi-
cally, these Language Models undergo pretraining using the
Masked Language Modeling (MLM) objective. This involves
randomly masking 15% of the words in a sentence, subse-
quently processing the entire masked sentence through the
model, and predicting the masked word [39]. For code-based
models, we opted for CodeBERT and CodeBERTa as they are
pre-trained on data from various programming languages. We
also consider, codebert-java, a specialized CodeBERTa model
trained exclusively on Java code, shares the identical model
architecture and size (125M parameters) due to their common
foundation in the masked-language-modeling task [53].

Text Generation Models. We selected LLaMA 2 models as
they provide a benchmark for evaluating large-scale, general-
purpose language understanding and generation [38]. While
the CodeLlama models, specifically fine-tuned from LLaMA
2 models for coding tasks, offer insights into how specialized
training affects performance in code-related applications. For
both LLaMA 2 and CodeLlama, we selected 7B and 13B
versions from both LLMs to compare and assess the impact of
parameter size on accuracy in log level suggestion and inves-

tigate how these models perform under In-Context Learning
and fine-tuning scenarios.

C. Sampling Few Shot Data

Prior studies [54], [36] have shown that using diverse
training data improves the performance and generalization
of deep learning models. Based on this, we select few shot
samples from the target system to ensure we cover each
available log levels. For example, for a 5-shot sample, we
randomly select one logging sample from each level: debug,
warn, error, trace, and info. For a 30-shot sample, we choose
six logging samples from each log level. Random selection
helps to avoid bias and ensures that our samples represent a
wide range of scenarios, ensuring the diversity of the samples.

To explore how the number of shots affects LLM perfor-
mance, we selected samples with 5, 10, 20, and 30 shots. These
samples were then utilized in two different learning paradigms:
In-Context Learning. Given the token limitations of the
prompt, we concentrate on using 5-shot samples for In-Context
Learning (ICL). In our experiment, each prompt includes five
samples, with each sample containing the processed source
code and log message as input, and the corresponding log level
of a logging statement as the output. The goal is to assess
if the LLM can accurately match log levels with functions
and logging statements. We also evaluate ICL’s effectiveness
using a 0-shot prompt to determine how well the model can
understand instructions without any prior examples.
Fine-tuning. To compare the performance of In-Context
Learning and fine-tuning, we use the 5-shot samples in ICL
prompts for fine-tuning LLMs. This comparison evaluates
differences in model performance between these approaches:
adapting to tasks with in-context examples versus updating
the model’s parameters through fine-tuning. Our analysis aims
to determine which method provides superior accuracy for
log level suggestion. Additionally, to assess the impact of
the number of shots on LLM performance, we fine-tuned the
models using 10, 20, and 30 logging samples, following the
prompt template illustrated in Step 4 of Figure 1. To ensure a
fair comparison with prior works [23], [24], we follow these
studies by also fine-tuning the LLMs using 60% of the data as
a training dataset. We apply stratified random sampling [55] to
divide the dataset into 60% of the input data for training, 20%
for validation, and 20% for testing. This approach maintains
the same amount of data used in the training, as well as ensures
distribution of log levels across all sampled datasets as in the
original data.

D. Evaluation Metrics

A “verbalizer” is a method for converting abstract labels
or tokens into specific, interpretable terms. For Fill-Mask
LLMs, log levels are used as tokens for verbalizers to provide
clear mappings for suggestion tasks, whereas Text Generation
LLMs do not require explicit verbalizers, as these models can
inherently identify and apply suitable verbalizations for log
levels. Unlike Fill-Mask LLMs, which focus on completing
or predicting specific words within a given context, Text



Generation LLMs are designed to produce coherent and con-
textually appropriate text sequences that extend beyond single
words. To handle this, we use post-processing techniques to
extract the relevant log level from their outputs, which aligning
with methods used in related studies [56]. Following prior
studies [23], [24], we use Accuracy, Area Under the Curve
(AUC), and Average Ordinal Distance Score (AOD), to assess
the performance of LLMs in suggesting log levels.
Accuracy. The accuracy metric, widely used in previous multi-
class classification studies [57], [23], [29], [56], [24], measures
the proportion of correctly suggested log levels relative to
the total. Accuracy is defined as the percentage of correct
suggestions from the suggestion process. Higher accuracy
reflects a model’s proficiency in recommending log levels for
more logging statements.
Area Under the Curve (AUC). The AUC (Area Under the
Curve) measures a model’s ability to discriminate between
classes using the ROC (Receiver Operating Characteristic)
curve, which plots the true positive rate against the false
positive rate. AUC values range from 0 to 1, with higher
values indicating better discrimination. An AUC below 0.5
suggests random performance. This study adopts the multiclass
AUC definition by Hand et al.[58], following prior work[26],
[23], [24]. In both previous and current research, this metric
demonstrates a model’s ability to distinguish log levels.
Average Ordinal Distance Score (AOD). It assesses the
proximity between the actual log level and the suggested
log level for each logging statement [23]. Each log level is
assigned a numerical value, and the AOD is computed using
the following formula:

AOD =

∑N
i=1

(
1− Dis(ai, si)

MaxDis(ai)

)
N

(1)

where N represents the total number of suggestions. For each
logging statement and its suggested log level, Dis(a, s) is the
distance between the actual log level ai and the suggested
log level si (e.g., the distance between error and info is 2).
The maximum possible distance of the actual log level ai is
denoted by MaxDis(a). The resulting AOD value ranges from
0 to 1, with a higher value indicating that the suggested log
level is closer to the actual log level.
Environment and Implementation. Our experiments were
conducted on a server with an NVIDIA Tesla V100 GPU using
CUDA 12.2.2. We use the OpenPrompt framework [59] to
fine-tune Fill-Mask LLMs by masking words in sentences and
suggesting appropriate log levels. For Text Generation models,
we fine-tune using LoRA [49], applying a maximum learning
rate of 5e-4, the AdamW [60] optimizer, and a linear learning
rate decay schedule. LLMs exhibit inherent randomness during
the inference process. To ensure consistent output for the same
input, we set the temperature parameter to 0.

IV. RESULTS

In this section, we present our study results by answering
the research questions (RQs).

A. RQ1: What is the accuracy of LLMs in suggesting log
level?

Motivation. While LLMs have been used in prior studies to
generate log statements [29], [31], [56], there is limited re-
search on comprehensively suggesting log levels across diverse
LLMs. Hence, we investigate (1) whether LLMs trained with
different objectives (Fill-Mask and Text Generation Task) and
different datasets (code snippets vs. natural language) vary in
their effectiveness at suggesting log levels and (2) whether
in-context learning or fine-tuning performs better in log-level
suggestions. In particular, we answer the following three RQs
to benchmark the capability of LLMs in log level suggestion:
RQ1-A: What is the effectiveness of LLMs in log level
suggestion?
RQ1-B: How does fine-tuning or in-context learning impact
LLMs?
RQ1-C: How does the performance of LLMs in log level
suggestion compare to existing state-of-the-art?

1) RQ1-A: What is the effectiveness of LLMs in log level
suggestion:

Results. For log level suggestion tasks, while larger LLMs
generally show better accuracy, smaller code-specific models
like CodeLlama 7B can achieve comparable performance to
their larger counterparts with lower resource consumption,
making them a more efficient option. Table III shows the
performance of log level suggestion across diverse fill-mask
and Text Generation LLMs. We consistently observe that
larger variant of LLMs (RoBERTa large, LLaMA 2 13B)
which are trained with more parameters outperform their
base counterparts. For instance, the accuracy of roberta-large
surpasses that of roberta-base by 6.95%. Similarly, both 13B
versions of LLaMA 2 and CodeLlama exhibit slight but
discernible improvements over their 7B counterparts, with
2.06% and 0.88% higher accuracy, respectively. However, the
improvement in accuracy achieved by using larger variants of
LLMs is not as substantial as the improvement gained from
LLMs that have been trained with code. Interestingly, CodeL-
lama 7B performs comparably to CodeLlama 13B, despite
having fewer parameters. Hence, for log level suggestion, the
7B model may be sufficient to achieve high performance with
less resource consumption.

Choosing an LLM trained on relevant data is more
crucial than selecting one trained with a larger number of
parameters. Code-based LLM achieves superior performance
(20% to 40% higher) compared to NLP-based LLMs, despite
having smaller parameters. As expected, for both in-context
learning and fine-tuning, LLMs trained on code achieve the
highest accuracy, AUC, and AOD in both Fill-Mask and
Text Generation tasks. Among fill-mask LLMs, the highest
accuracy is achieved by GraphCodeBERT, while among text
generation models, CodeLlama 7B leads. For instance, when
comparing the accuracies of GraphCodeBERT and CodeLlama
7B, both achieve around 40%, whereas NLP-based LLMs like
BERT and Llama2 achieve slightly more than 20% accuracy.



TABLE III: Comparison of accuracy, AUC, and AOD of LLMs across in-context learning and fine-tuning with varying few-shot
sizes. The highest value for Fill-Mask LLMs is denoted in blue, and the highest value for Text Generation LLMs is in red.

LLMs
In-Context Learning Fine-tuning

0 shots 5 shots 5 shots 10 shots 20 shots 30 shots 60% shots
Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD

Fill-Mask
BERT base 18.67 53.12 57.65 22.58 57.94 57.58 29.30 59.69 54.73 31.43 60.78 54.16 35.64 64.00 61.06 38.38 65.51 63.19 60.77 81.08 79.03
BERT large 18.79 53.37 58.24 21.84 57.97 62.13 31.47 62.00 58.75 36.03 64.30 59.81 39.54 67.03 65.23 38.91 66.84 65.07 61.4 81.48 79.86
RoBERTa base 18.47 53.10 57.83 19.93 54.32 53.55 29.64 59.50 57.81 35.01 64.31 62.32 38.62 65.99 63.9 41.91 68.77 67.36 62.74 82.23 80.18
RoBERTa large 27.40 54.10 57.35 21.50 52.58 50.01 30.57 60.41 61.03 36.31 64.84 63.67 40.58 65.97 65.48 45.76 70.64 70.26 63.90 82.78 81.31
CodeBERTa 23.12 56.09 59.21 27.93 61.32 63.50 28.93 59.34 56.30 29.98 59.36 55.96 34.53 61.80 59.34 38.05 64.51 62.69 60.73 80.54 78.38
CodeBERT 23.07 57.03 68.65 31.76 65.20 68.83 31.55 62.86 56.63 36.75 66.76 62.20 42.47 71.24 69.33 46.46 72.78 71.02 63.88 82.88 81.08
codebert-java 23.41 56.66 68.98 26.46 58.41 69.50 35.48 64.52 58.75 38.57 65.98 61.48 45.04 71.22 69.86 47.16 72.49 71.54 63.42 82.16 80.60
GraphCodeBERT 22.56 55.99 68.71 30.01 66.48 68.02 34.07 65.00 58.55 40.41 69.51 66.53 45.60 72.50 71.36 48.61 74.02 71.76 64.81 83.20 81.28

Text Generation
LLaMA 2 7B 29.60 60.18 66.45 27.73 57.88 64.7 27.77 62.37 58.52 29.39 59.73 57.18 33.5 66.42 68.2 34.51 64.61 68.28 38.14 60.9 66.51
LLaMA 2 13B 31.56 64.44 70.85 24.99 56.45 67.35 27.98 61.16 58.27 33.85 66.54 63.74 37.82 69.44 68.42 41.22 71.55 71.84 55.13 78.66 79.83
CodeLlama 7B 34.22 64.16 72.09 44.83 75.53 78.87 33.69 64.64 66.93 37.68 68.87 65.19 42.37 73.09 72.69 42.75 73.21 70.79 58.33 80.45 81.56
CodeLlama 13B 42.40 74.01 76.22 39.58 69.98 69.98 41.92 73.73 74.78 41.53 72.45 70.77 44.00 75.41 74.89 43.78 75.06 75.18 45.53 75.75 77.31

TABLE IV: Comparison between our LLM-based log level
suggestion: FM (Fill-Mask LLM) and TG (Text Generation
LLM), and two state-of-the-arts deep learning-based tech-
niques: DeepLV [23] and TeLL [24].

Project Accuracy AUC AOD

DeepLV TeLL FM TG DeepLV TeLL FM TG DeepLV TeLL FM TG

Cassandra 60.6 63.5 62.2 41.7 84.2 88.4 80.0 66.4 80.5 81.2 78.4 73.1
ElasticSearch 57.7 70.3 55.8 63.9 81.3 90.5 77.1 82.9 80.2 84.1 77.4 82.9
Flink 65.2 72.9 72.0 75.2 85.1 92.5 87.1 88.6 83.8 86.3 85.2 87.3
Hbase 60.3 70.7 64.5 67.3 84.2 92.1 83.5 85.3 81.7 87.3 80.4 82.7
Jmeter 62.3 73.7 69.5 70.2 83.9 92.1 85.1 86.0 80.9 87.2 83.7 86.7
Kafka 51.8 64.2 60.6 53.5 79.5 88.8 81.8 81.8 77.5 81.2 80.9 79.8
Karaf 67.2 75.0 67.9 58.0 85.6 90.8 85.6 86.5 81.6 86.7 83.6 84.6
Wicket 63.8 74.4 63.7 50.0 85.0 89.9 82.2 68.7 79.3 85.6 78.8 78.5
Zookeeper 60.9 74.6 67.0 45.0 84.8 92.4 86.5 77.8 82.0 88.7 83.0 78.4

Average 61.1 71.0 64.8 58.3 83.7 90.8 83.2 80.4 80.8 85.4 81.3 81.6

2) RQ1-B: How does In-Context Learning or fine-tuning
impact LLMs:

Results. When using the same set of samples, 10 out of
12 LLMs perform better when these samples are used for
fine-tuning rather than for prompt construction. Out of 8
Fill-Mask LLMs, 7 exhibited improved performance when
the 5-shot samples were used for fine-tuning rather than for
In-Context Learning. The exception was CodeBERT, which
saw a slight accuracy decrease of 0.3%. The other Fill-Mask
LLMs demonstrated performance gains, with RoBERTa large
showing the most significant improvement, up to 9.7%. In
contrast, among the Text Generation LLMs, only CodeLlama
7B experienced a minor decline in performance.

Text Generation LLMs demonstrate superior performance
out of the box, but they are difficult to fine-tune effectively.
Although all LLMs showed potential for improvement through
fine-tuning, the rate of improvement varied between Fill-Mask
and Text Generation LLMs when fine-tuning with 10, 20, and
30 shots. Off-the-shelf Text Generation LLMs, with accuracies
ranging from 29.60% to 42.40%, outperform Fill-Mask LLMs,
which have accuracies between 18.47% and 27.40%. However,
increasing the data to 60% did not improve results for Text
Generation LLMs. In contrast, Fill-Mask LLMs showed signif-
icant gains across all metrics, with accuracies nearly tripling.

3) RQ1-C: How does the performance of LLMs in log level
suggestion compare to existing state-of-the-art:

Results. Given the log message and source code of the
method provided, fine-tuned Fill-Mask LLM achieves com-
petitive performance with state-of-the-art models, with a
margin under 7%. As noted in RQ1-B, Text Generation
LLMs performed poorly even after fine-tuning with 60% of
the input data. Specifically, CodeLlama 7B achieved 58.3%
accuracy, comparable to DeepLV models trained with log
messages (61.1%). On the other hand, Fill-Mask LLMs bene-
fited significantly from fine-tuning. Table IV showed that Fill-
Mask LLMs surpass DeepLV in accuracy, AUC, and AOD
metrics with GraphCodeBERT. Notably, accuracy improved
by 3.7%, though it still lags behind TeLL by approximately
6.2%. This demonstrates that a fine-tuned Fill-Mask LLM
achieves competitive performance with state-of-the-art models
when provided with both source code and log messages.

Discussions. Text Generation LLMs, especially NLP-based
LLMs, pose a high risk of producing invalid results, but this
risk can be mitigated with the aid of fine-tuning. We have
noticed that Text Generation LLMs often rephrase questions or
repeat instructions, leading to invalid suggestions. This issue,
called “hallucination” [61], [62], [63], refers to generating
text that is nonsensical or strays from the original content.
These hallucinations motivate us to investigate the frequency
of unavailable results and to explore strategies for minimizing
their occurrence.

Among Text Generation LLMs, the CodeLlama 13B model
has the lowest hallucination rate, with only a 0.19% likeli-
hood of producing an invalid output—about 2 out of 1,000
log level suggestions—despite being untrained and lacking
example prompts. This shows that CodeLlama 13B performs
the strongest in interpreting our prompts and generating ap-
propriate responses.

Among all learning paradigms for CodeLlama 13B, fine-
tuning with 5 shots has the highest probability of returning an
invalid output at 2.62%, while other paradigms show less than
1%. Similarly, CodeLlama 7B reaches a 5.73% possibility of
returning invalid results with fine-tuning and 5 shots. However,
CodeLlama 7B has a 20.1% chance of returning invalid input
when untrained and without examples in the prompt, opposite
to CodeLlama 13B. Despite this, CodeLlama 7B and 13B have
accuracies of 34.22% and 42.40%, respectively, meaning that



although 1 in 5 suggested results are invalid, CodeLlama 7B
achieves higher accuracy in log level suggestion.

For LLaMA 2 variants, off-the-shelf LLaMA 7B has sim-
ilar chances of returning invalid data regardless of samples
provided in the prompt: ICL 0 shots have a 25.41% chance,
and ICL 5 shots have 24.30%. While still higher than Code
LLaMA variants, fine-tuned LLaMA 2 models are less likely
to return invalid results. However, LLaMA 2 13B is most
prone to confusion with long prompts, returning invalid results
49.8% of the time.

These observations highlight the effectiveness of LLMs in
varying scenarios and emphasize the importance of selecting
the right model for task requirements. Enhanced training
and fine-tuning strategies can reduce invalid output rates,
enhancing reliability in real-world applications.

Insufficient training data may lead to monotonous log level
predictions in Fill-Mask LLMs. We observed that under the
ICL 0 shots paradigm, Fill-Mask LLMs predominantly suggest
either “Info” or “Error” log levels. As the amount of training
data increases, these models gradually start incorporating a
broader range of log levels in their suggestions. This trend un-
derscores the impact of additional training data on enhancing
the accuracy and flexibility of LLMs, particularly in adapting
to a broader spectrum of log levels. This finding is crucial
for improving LLM robustness and applicability in real-world
scenarios requiring diverse log level suggestions.

Fill-Mask models such as GraphCodeBERT, when fine-
tuned, can outperform larger models in log level sugges-
tions. Fine-tuning using task-specific data leads to sub-
stantial improvements in accuracy and makes these models
competitive with state-of-the-art methods.

B. RQ2: How effective is including additional context in log
level suggestion?

Motivation. Prior studies [23], [24] found that combining
two features improves log level suggestion performance.
DeepLV [23] achieved 42.0% accuracy with log messages
alone, 54.0% with syntactic context, and 61.1% with both.
TeLL [24] reached 71.0% using log messages and multi-level
block information, compared to 67.8% with just the latter.
In our comparison of LLMs and prior works, we initially
included both source code and log messages. However, since
TeLL [24] credited intra-block features for their success, we
are considering additional contexts to improve accuracy.
Approach. The prompt string is tweaked to include the calling
method as seen in the sample below.
### Instruction: Between debug, warn, error, trace, info,
which is the appropriate log level for this logging statement?
### Input: The previous method is z, the source code is x,
and the log message is y.
### Response: The log level is z.

Results. Overloading context negatively impacts LLM per-
formance across learning paradigms. Table V showed that
including additional context will have a detrimental effect on

the performance of LLMs in suggesting log level. Both Fill-
Mask and Text Generation LLMs showed a slight decline in
accuracy for each of the learning paradigms, especially in
In-Context Learning 5 shots, where the results plummeted
15.97% whereas other settings observed a decrease between
2.77% to 3.07%. This outcome conforms to the results in the
work of He et al. [64] and Shi et al. [65], where incorporating
more contexts cannot always guarantee a better result.

Short prompts decrease the risk of invalid outputs in log
level suggestions using Text Generation LLMs.

We examined how including additional context affects the
frequency of invalid outputs compared to cases without it.
We found that longer prompts, including calling methods, led
to a higher rate of invalid outputs. This finding is consistent
with the research by Schäfer et al. [66] and Liu et al. [67],
who noted that models struggle to robustly access and use
information in long input contexts. In our case, incorporating
details such as method call code can confuse the model,
leading to invalid results and reduced accuracy. Our study
highlights the advantages of concise prompts in improving
Text Generation LLMs’ effectiveness for log level suggestions.
Discussions. Concise Prompts for Enhancing LLM Per-
formance in Log Level Suggestions. These findings sug-
gest that overloading LLMs with excessive information can
hinder their performance. By emphasizing concise prompts
that focus on essential elements, such as log messages and
source code, developers can improve the quality of the model’s
outputs. Our study highlights how prompt design affects LLM
effectiveness and encourages future research on lightweight
contextual features that are more focused. This could boost
LLM performance without complicating input, resulting in
more reliable software engineering applications.

Including additional context reduces the accuracy of log
level suggestions and increases the likelihood of invalid
outputs. This suggests that concise prompts focused on
relevant log messages and code are more effective, while
overloading the model with undistilled context can nega-
tively impact its performance.

C. RQ3: How is the generalizability of LLMs in suggesting
log levels?

Motivation. Newly developed software systems may lack
sufficient logging statements and source code to fine-tune an
LLM adequately. In such cases, fine-tuning the LLM with
a limited dataset can lead to suboptimal results. Therefore,
leveraging data from other projects to complement the existing
dataset for fine-tuning the LLM becomes essential. Such trans-
fer learning techniques are commonly employed to overcome
the challenge of limited datasets [68]. Previous studies have
produced mixed findings on generalizability. DeepLV [23]
reported less than a 1% increase in all metrics from enlarging
or combining datasets, while other studies [24], [27] reported
different outcomes. This discrepancy motivates us to investi-
gate whether LLMs exhibit varying degrees of transferability
when subjected to different dataset and combinations.



TABLE V: Comparison of Fill-Mask Language Model (GraphCodeBERT) and Text Generation Language Model (CodeLlama
7B) with and without additional context.

Settings
Fill-Mask Text Generation

Acc. AUC AOD Acc. AUC AOD
W/O With W/O With W/O With W/O With W/O With W/O With

ICL 0 shots 38.80 38.88 (+0.08) 70.39 68.18 (-2.21) 68.39 67.20 (+0.21) 40.38 37.61 (-2.77) 67.59 65.47 (-2.12) 71.34 70.45 (-0.89)
ICL 5 shots 34.55 29.48 (-5.07) 69.38 60.45 (-8.93) 65.88 47.8 (+5.43) 48.19 32.22 (-15.97) 74.34 61.66 (-12.68) 75.72 67.83 (-7.89)
FT 5 shots 37.19 33.42 (-3.77) 69.94 66.31 (-3.63) 65.41 64.38 (-0.9) 40.42 37.48 (-2.94) 67.69 65.43 (-2.26) 71.35 70.43 (-0.92)
FT 10 shots 38.56 41.12 (+2.56) 67.87 69.84 (+1.97) 60.67 70.27 (-9.17) 40.3 37.32 (-2.98) 67.55 65.35 (-2.20) 71.26 70.37 (-0.89)
FT 20 shots 40.86 42.03 (+1.17) 71.68 70.72 (-0.96) 67.18 71.39 (-3.54) 40.39 37.33 (-3.06) 67.62 65.39 (-2.23) 71.27 70.34 (-0.93)
FT 30 shots 40.89 41.57 (+0.68) 71.85 71.08 (-0.77) 69.24 70.86 (-1.84) 40.41 37.34 (-3.07) 67.73 65.36 (-2.37) 71.41 70.40 (-1.01)
FT 60% shots 67.3 62.88 (-4.42) 83.43 81.90 (-1.53) 82.99 80.78 (+1.09) 40.43 37.61 (-2.82) 67.80 65.57 (-2.23) 71.44 70.53 (-0.91)

In this RQ, we study whether transfer learning among dif-
ferent studied systems is suitable for LLM with the following
two sub-RQs:
RQ3-A: Can the performance improve by including training
data from other studied systems?
RQ3-B: How accurate are LLMs in cross-system suggestions?

1) RQ3-A: Can the performance improve by including
training data from other studied systems:

Approach. We expand the training dataset by consolidating all
training data from the nine Java systems. Employing stratified
sampling for each system, we partition the data into training
(60%), validation (20%), and testing (20%) sets. Subsequently,
we consolidate the training data from all systems and utilize it
for fine-tuning the LLM. Meanwhile, the combined 20% val-
idation dataset is employed to validate the model throughout
the training phase. Finally, we utilized the fine-tuned LLM
trained with the expanded dataset to the testing data of each
system under study.

2) RQ3-B: How accurate are LLMs in cross-system sugges-
tions:

Approach. For each target system, the training data from the
remaining eight systems is consolidated and subjected to strati-
fied sampling [55] with the 60%:20%:20% ratio. Subsequently,
this training data is utilized to fine-tune the LLM and is tested
on the remaining test data from the other eight systems.

Results. LLMs do not benefit from transfer learning, whether
through enlarging or combining datasets. Table VI shows
the results of enlarging the training set and combining the
training set. We compared the performance of the best Fill-
Mask and Text Generation LLMs identified in RQ1 with
their within-system suggestions noted in RQ1, highlighting
the differences in the values provided in parentheses. Overall,
both cross and enlarged dataset training led to decreases in
accuracy, AUC, and AOD for both LLM types. We noticed
that Fill-Mask LLM performance decreased more significantly
compared to the Text Generation LLM. The accuracy dropped
15.1% and 11.3% by Fill Mask LLM in cross and enlarged
dataset training respectively, whereas Text Generation LLMs’
accuracy reduced 14.0% and 8.2%. Despite Fill Mask LLM
suffering more, the average values for all three metrics still
surpassed the performance of Text Generation LLM.

Larger datasets and fine-tuning have limited impact on
Text Generation LLM Performance for Log Level Sugges-
tion.

Another observation is that the accuracy, AUC, and AOD
of Text Generation LLMs are less affected by enlarging or
combining datasets. This aligns with RQ1 findings, where
increasing the number of sampling shots did not significantly
improve Text Generation LLM performance.

Table VI shows an average decrease of 18.9% in Accuracy
for Fill-Mask LLMs and 4.0% for Text Generation LLMs,
indicating that fine-tuning LLMs does not benefit from the
enlarged dataset. This finding aligns with previous studies [24],
[27], where cross-system suggestions performed worse than
within-system suggestions.

LLMs excel in suggesting log levels within the same sys-
tem rather than across different systems, emphasizing the
importance of specific data contexts in log level suggestion.

V. IMPLICATIONS AND FUTURE WORKS

Based on our empirical findings, we highlight actionable
insights and future directions for two key audiences: 1

developers, and 2 researchers.

A. Developers

Approaches for Utilizing LLMs to Enhance Code Improve-
ment Tasks. We identified key strategies for using LLMs to
improve log level suggestions, which can also benefit other
code enhancement tasks. While larger LLMs often provide
better accuracy, smaller, code-specific models can achieve
similar results with less resource use, making them more
efficient. When resources are limited, Fill-Mask LLMs can
also perform well despite their size. It’s important to choose
an LLM trained on relevant data for specific logging tasks, as
this improves performance more than simply selecting larger
models. Developers should focus on fine-tuning to enhance
accuracy instead of relying on in-context learning. Although
Text Generation LLMs show strong initial performance, they
can be hard to fine-tune, so exploring other models or tech-
niques may lead to better results. By following these strategies,
developers can improve log level suggestions and support other
code enhancement efforts.

B. Researchers

Enhancing LLMs through Information Slicing and Addi-
tional Code Features. In Section IV, we found that short
prompts decrease the risk of invalid outputs in log level
suggestions. Li et al. [69] emphasize the importance of
dynamic variables in logging, noting that log variables are



TABLE VI: Comparison between Cross Dataset Training and Enlarged Dataset Training Fill-Mask (GraphCodeBERT) and
Text Generation (CodeLlama 7B) LLMs in terms of Accuracy, AUC and AOD.

Project
Cross Dataset Training Enlarged Dataset Training

Fill-Mask Text Generation Fill-Mask Text Generation

Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD Acc. AUC AOD

Cassandra 46.7 (-18.7) 73.3 (-9.4) 72.2 (-9.7) 38.8 (-7.1) 70.9 (+2.0) 72.5 (-1.8) 55.5 (-9.8) 76.9 (-5.8) 76.4 (-5.5) 45.8 (-0.1) 75.3 (+6.4) 74.3 (+0.0)
ElasticSearch 39.0 (-29.0) 67.6 (-14.7) 68.5 (-14.0) 40.7 (+11.8) 69.2 (+8.4) 71.0 (+8.6) 42.5 (-25.5) 71.0 (-11.3) 72.6 (-9.9) 47.9 (+19.0) 74.5 (+13.7) 76.8 (+14.4)
Flink 52.8 (-19.2) 78.5 (-9.0) 73.9 (-11.9) 53.8 (+3.0) 78.0 (+3.6) 75.3 (-3.1) 56.2 (-15.8) 81.3 (-6.2) 76.9 (-8.8) 60.3 (+9.5) 81.2 (+6.8) 78.1 (-0.3)
Hbase 51.0 (-21.0) 77.6 (-8.8) 74.5 (-11.0) 48.7 (-3.4) 75.7 (+2.0) 74.4 (-3.4) 54.0 (-18.0) 78.6 (-7.8) 76.7 (-8.8) 55.6 (+3.5) 80.2 (+6.5) 79.0 (+1.2)
Jmeter 54.4 (-23.6) 79.1 (-10.4) 77.0 (-12.4) 53.7 (+7.3) 78.2 (+7.7) 77.5 (+1.8) 60.4 (-17.6) 81.2 (-8.3) 81.2 (-8.2) 61.3 (+14.9) 81.0 (+10.5) 80.8 (+5.1)
Kafka 47.7 (-18.1) 75.3 (-8.1) 72.6 (-10.5) 44.3 (+6.6) 74.1 (+8.7) 73.6 (+5.7) 46.9 (-18.9) 74.9 (-8.5) 71.7 (-11.4) 47.8 (+10.1) 77.7 (+12.3) 75.6 (+7.7)
Karaf 59.0 (-5.1) 83.3 (+0.1) 80.3 (-1.1) 46.4 (-0.3) 78.9 (+4.0) 79.0 (+0.7) 61.8 (-2.3) 83.7 (+0.5) 81.8 (+0.4) 51.9 (+5.2) 81.9 (+7.0) 80.7 (+2.4)
Wicket 48.4 (-21.1) 74.0 (-6.6) 71.6 (-11.0) 35.3 (-5.4) 69.8 (+2.7) 68.1 (-3.5) 52.4 (-17.1) 77.2 (-3.4) 74.9 (-7.7) 37.9 (-2.8) 70.8 (+3.7) 66.5 (-5.1)
Zookeeper 47.9 (-14.5) 79.6 (-3.1) 74.7 (-7.3) 37.0 (-12.2) 74.6 (+1.1) 73.9 (-2.3) 52.0 (-10.4) 81.3 (-1.4) 77.0 (-5.0) 42.1 (-7.1) 77.4 (+3.9) 76.6 (+0.4)

Average 49.7 (-18.9) 76.5 (-7.8) 73.9 (-9.9) 44.3 (+0.0) 74.4 (+4.5) 73.9 (+0.3) 53.5 (-15.1) 78.5 (-5.8) 76.6 (-7.2) 50.1 (+5.8) 77.8 (+7.9) 76.5 (+2.9)

Note: The +/- number after each data denotes the relative improvement or decline compared to the suggestions within the system as observed in RQ1.

typically shorter than calling method code. Additionally, Wang
et al. [70] discovered that breaking information into slices
improves LLM performance in generating test cases. By
combining these findings, we can explore the potential of using
shorter log variables alongside information slicing to enhance
LLM effectiveness. Future research could utilize static code
analysis to identify and incorporate additional code features,
such as log variables, which may further improve performance.

Effective LLMs Are Not Just About Parameters. In our
study, we assessed 12 open-source LLMs for log level sugges-
tion and identified several performance patterns that provide
insights for selecting the most effective models and optimizing
their use. We found that larger parameters do not always per-
form better; instead, smaller, specialized models can be equally
or more effective. Based on these insights, future research
should focus on utilizing diverse training tasks, integrating dy-
namic variables, and employing information slicing techniques
to further enhance LLM performance. Additionally, leveraging
static code analysis to identify relevant code features may
further improve model effectiveness.

Expanding the Scope of Training Tasks and Increasing
Feature Diversity. To enhance the overall performance of
LLMs in software engineering, it is essential to evaluate the
incorporation of a diverse range of software development tasks
beyond log level suggestion, including code enhancement,
refactoring, and testing. Integrating these varied challenges
into the training process allows LLMs to acquire a more
profound understanding of coding practices and their complex-
ities. This expanded training set will strengthen the models’
robustness and versatility, enabling them to better meet the
diverse needs of developers. Future research should prioritize
this inclusion, ultimately leading to the development of more
effective LLMs that can better support developers and software
teams in real-world applications.

VI. THREATS TO VALIDITY

Construct Validity. Our methodology assumes that the train-
ing data consists of high-quality source code that follows best
logging practices. However, there is no universally accepted
industrial standards for writing logging statements. To mitigate
the issue, we selected large-scale, well-maintained systems of

varying sizes across different domains that have been widely
recognized by prior studies for their adherence to established
logging standards [23], [24], [71]. We evaluate our models
using the test datasets from each of these systems. It is
important to note that different test datasets can yield diverse
outcomes. To mitigate the impact of this variability, we employ
stratified random sampling techniques, as utilized in prior
studies [23], [51], [57], [55], to partition the dataset while
maintaining the original dataset’s distribution of labels.

Internal Validity. Randomness are observed during the infer-
ence process of LLMs. To mitigate this threat, we regulate the
model temperature to 0, ensuring that LLMs consistently yield
more consistent outputs for identical input text.

External Validity. The nine subjects of this study are open-
source Java projects from the Apache Software Foundation.
While Apache’s coding style may limit the applicability
of findings to other organizations, the study spans various
domains, project sizes, and logging volumes for broader
representativeness. Although evolving software practices and
languages like C++ could affect the findings, our 0-shot
experiments show minimal data leakage concerns, as low
accuracy suggests the base model’s unfamiliarity with these
systems.

VII. CONCLUSION

In this study, we examined log level suggestion across
nine Java systems using twelve open-source LLMs, focus-
ing on leveraging readily available data like method source
code and log messages. We found that LLM performance
varies significantly by task and model type, with Code-based
LLMs generally outperforming NLP-based LLMs for log
level suggestion. Text Generation LLMs excelled with few-
shot prompting, while Fill-Mask LLMs responded better to
fine-tuning. Including the source code of calling methods
decreased performance and increased invalid outputs. Our
research highlights the importance of task-specific data and
suggests that Text Generation LLMs are preferable when such
data is unavailable. These findings offer valuable insights for
enhancing LLMs in log level suggestion and guiding future
research on refining LLMs for various code-related tasks.
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