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ABSTRACT

Modern integrated development environments (IDEs) provide vari-
ous automated code suggestion techniques (e.g., code completion
and code generation) to help developers improve their efficiency.
Such techniques may retrieve similar code snippets from the code
base or leverage deep learning models to provide code suggestions.
However, how to effectively enhance the code suggestions using
code retrieval has not been systematically investigated. In this pa-
per, we study and explore a retrieval-augmented framework for
code suggestions. Specifically, our framework leverages different
retrieval approaches and search strategies to search similar code
snippets. Then the retrieved code is used to further enhance the
performance of language models on code suggestions. We con-
duct experiments by integrating different language models into
our framework and compare the results with their original models.
We find that our framework noticeably improves the performance
of both code completion and code generation by up to 53.8% and
130.8% in terms of BLEU-4, respectively. Our study highlights that
integrating the retrieval process into code suggestions can improve
the performance of code suggestions by a large margin.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement;
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Figure 1: A common programming scenario during software
development. A developer first constructs the query in NL or
code, and then uses it to find similar code in the search engine
or code base, which instructs the developer to program.
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1 INTRODUCTION

Code suggestion (e.g., code completion and code generation), which
aims to suggest code for developers, is an important research topic
in the software engineering community. Since the naturalness of
software is introduced [22], many prior studies leverage language
models (LMs) [19, 58] to improve the quality of code suggestions.
In recent years, deep learning (DL) techniques have been widely
used in code suggestions. Such DL techniques generally recommend
code based on requirements written in natural language (NL). These
works utilize deep neural networks (DNNs) to learn different types
of code representations, such as token sequences [43, 51, 57, 62],
abstract syntax trees (ASTs) [31, 36, 56, 60], and graphs (e.g., control
flow graphs) [8, 16, 45], and then provide code suggestions.
However, as shown in Figure 1, developers typically search for
similar code according to the requirements and then write the
source code by imitating the searched exemplars instead of coding
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from scratch [17]. They first construct an appropriate search query
using the functional description in NL or using the key information
of the desired code snippet (e.g., the header of a method) based on
their need. They then use the query to search for similar code from
the code base. Given the helpfulness of exemplars in such process,
integrating similar code snippets may provide additional informa-
tion and further improve the performance of code suggestions.

Prior studies [18, 49] proposed approaches to suggesting code
based on retrieval and preliminarily investigated the effectiveness
of code search in improving code suggestions. However, these ap-
proaches are generally designed for specific models and search
algorithms. It is difficult to untangle and integrate with other mod-
els. Moreover, it still remains unclear for how to effectively com-
bine different code search techniques and code suggestion models.
In this paper, we propose a retrieval-augmented code suggestion
framework, which has the following characteristics:

e Various Combinations. We adopt simple techniques (e.g., con-
catenation) to combine various types of code search strategies,
techniques, and language models, which makes our approach
able to efficiently explore the effectiveness of code retrieval in
code suggestions under various combinations.

o Plug-and-play. Our framework is compatible with various re-
trieval approaches and language models, which saves the effort
of redesigning them. It can integrate well with existing code
suggestion systems.

Our framework consists of three components, including a Re-
triever, a Formulator, and a Generator:

e Retriever analyzes information in the source query to retrieve
similar target code snippets. We study three search strategies:
Header2Code (i.e., using method header in source and code in
target), NL2Code (i.e., using NL descriptions in source and code in
target), and NL2NL (i.e., using NL descriptions in both source and
target as the key information to search). In addition, we adopt
both information retrieval-based (IR-based) and deep learning-
based (DL-based) approaches to support the retrieval.

o Formulator combines similar code obtained from the retriever
with the code context. The formulator transforms such informa-
tion into formulated input that can be processed by the generator.

o Generator is generally a language model that receives formatted
input from the formulator and provides code suggestions. In
this paper, we use both general DL models with relatively small
parameter sizes (e.g., LSTM) and large language models (LLMs)
as the generator.

To evaluate our framework, we combine different kinds of re-
trieval approaches, search strategies, and language models to eval-
uate the effectiveness of retrieval in code suggestions. We conduct
experiments on the tasks of code suggestion at different levels of
granularity: code completion and code generation. To accommodate
the capability of LMs in different sizes, we perform code completion
with general DL models and code generation with LLMs, respec-
tively. We adopt both Java and Python datasets for the retriever
and the generator. Results show that our framework noticeably
improves the performance of both code completion and code gen-
eration.

The main contributions of our paper are summarized as follows:
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e We propose a retrieval-augmented code suggestion framework
that can integrate different search strategies, retrieval techniques,
and LMs to improve the performance of code suggestions.

e We perform a comprehensive evaluation of our framework and
results show that our framework improves Transformer-XL [12]
by up to 53.8% and ChatGPT [4] by up to 130.8% in terms of BLEU-
4 for the code completion and generation tasks, respectively.

o We investigate the effectiveness of different shot numbers and
prompt templates when using retrieval-augmented ChatGPT.
We find that a small shot number can sufficiently enhance the
performance.

2 BACKGROUND

In this section, we discuss the background information related to
our study, including code search and generative language models.

2.1 Code Search

Code search is an important practice in software development and
maintenance. We follow previous works [13, 35, 63] and summa-
rize the code search techniques into IR-based and DL-based ones
according to the key methodologies leveraged.

IR-based Code Search. Typically, an IR-based code search engine
first builds indexes for specific fields of code snippets in the code
base and then retrieves similar code that matches the query accord-
ing to its scoring algorithm. One common similarity measure is
BM25 score [54], which is applied to the full-text search engine
Lucene [1]. BM25 is based on bag-of-words and considers the word
frequency as well as the lengths of both the query and documents.
Prior studies proposed various IR-based code search techniques.
Liu et al. [35] proposed a code search tool that can understand
the sequential semantics in important query words. Lv et al. [44]
proposed a code search technique that expands the query with
potential APIs. Overall, IR-based code search techniques have been
widely used in practice and are relatively convenient to deploy and
use.

DL-based Code Search. DL-based code search techniques utilize
DNNs to convert queries and code snippets in the code base into
feature vectors. After obtaining the vector representations, the
common practice is to calculate the cosine similarity between the
query and code snippets. Many prior works utilized deep learning
techniques to improve the quality of code search. Gu et al. [15] pro-
posed a neural network to learn the unified representations of both
source code and natural language queries. Liu et al. [38] proposed a
graph-based code search approach that learns the mapping of code
and query by capturing structural and semantic information. In
addition, pre-trained language models (e.g., CodeBERT [14]) have
also been applied to code search and achieve promising results.

2.2 Generative Language Model

Generative language models aim to perform generation tasks such
as text generation and code completion. We discuss such models
by summarizing them into neural language models, pre-trained
language models, and large language models.

Neural Language Models. Previous studies use neural networks
such as RNNs to generate program or natural language contents.
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LSTM [23], which introduces the memory cell to vanilla RNN, is
widely used to model source code. For example, Li et al. [32, 33]
leveraged bi-directional LSTM to provide suggestions for logging
code. Recently, language models built on the Transformer [59]
architecture such as Transformer-XL [12] have become popular.
These neural language models are widely used in code suggestions.
Liu et al. [36] utilized both Transformer-XL and LSTM networks
to perform multi-task learning for code completion. Svyatkovskiy
et al. [57] proposed a Transformer-based approach that provides
instant code suggestions in the IDE.

Pre-trained Language Models. Pre-trained language models are
usually trained on a large volume of data using Transformer-based
architectures. Apart from tasks in NL (e.g., cloze test and question
answering), they are also widely used in code suggestions. Wang et
al. [61] presented an encoder-decoder pre-trained model leveraging
code semantics conveyed from identifiers, which performs well in
code generation. Ahmad et al. [6] performed the task of code gen-
eration on a language model pre-trained on an extensive collection
of functions and NL text.

Large Language Models. LLMs refer to pre-trained models with
a very large number of parameters (e.g., billions or more). The
state-of-the-art LLMs include ChatGPT [4] and GPT-3.5 [9] which
have attracted great attention for their excellent generative abili-
ties. Codex [11], which has enhanced capability in generating the
source code, has been integrated into GitHub Copilot [3] to provide
automated support for developers in code suggestions.

3 METHODOLOGY

In this section, we present the methodology of our retrieval-augmented

code suggestion framework. We first introduce the overview of our
framework and then discuss the details of each component, respec-
tively.

3.1 Overview

As shown in Fig. 2, our framework consists of three components:
Retriever, Formulator, and Generator. Given the incomplete code
snippet that needs suggestions (we refer to such content as source
context), each of the components performs different roles in the
code suggestion tasks:

o Retriever searches for similar code using different search strate-
gies (e.g., Header2Code, which we will discuss later) and search
tools (e.g., Lucene based on IR) according to the given information
(e.g., method header) of the source context.

o Formulator combines retrieved code with the code context and
then formulates them as the input to the generator.

o Generator leverages the formulated input to perform the tasks
of code suggestions. We use different LMs as our generator.

3.2 Retriever

Developers generally search for the desired code snippets according
to the functional descriptions in natural language or the method
header (i.e., the method name, list of parameters, and the return
type) that includes the definition information of the method. There-
fore, in this paper, we investigate the effectiveness of different
search strategies and search techniques on code suggestions.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 1: The search strategies and retrieval approaches we
use.

Strategy ‘ IR-based DL-based
Header2Code ReACC-retriever

NL2Code Lucene CodeBERT
NL2NL Sentence-BERT

Before introducing the search strategies of our retriever, we
discuss two common scenarios related to the process of code search.
1) One common scenario for code search is using queries in NL to
find similar code snippets matching the corresponding descriptions
(we refer to such scenario as NL2Code). Prior studies proposed a
series of approaches considering this setting [15, 35, 46]. In this
paper, we use the term “comment” uniformly to refer to the first
sentence of documentation comment in Java or docstring in Python
which usually summarizes the overall functional logic of the method.
Given the hypothesis that similar code snippets are likely to have
similar NL descriptions, finding code sharing similar comments
(which we call NL2NL) is also indicated effective in prior studies [18,
30]. 2) The other common scenario for code search is using the
definition information of the method (e.g., method header) to find
the corresponding code snippets. Motivated by a prior work [20]
that considers the method header as the summary of the function,
we can use it to find the corresponding similar code (which we call
Header2Code). Therefore, the retriever searches for code snippets
based on these search strategies above, and the retrieved code
snippets can then be used to enhance code suggestions.

Search Strategies. We use different search strategies to retrieve
similar code snippets based on the information leveraged in the
source context and code snippets in the code base. Below, we discuss
each search strategy with the example shown in Figure 2.

e Header2Code. The retriever takes the method header as the
query and uses it to find code snippets. For example, Strategy 1
in Figure 2 that compares the header of the source context with
the code snippets in the code base belongs to this search strategy.

o NL2Code. The retriever uses the comment as the query to match
code in the code base. For example, Strategy 2 in Figure 2 illus-
trates the process of using the comment “fetch data from database”
to retrieve the corresponding code snippets.

e NL2NL. The retriever searches for comments in the code base
with similar meanings and takes the corresponding code as the
result of retrieval (i.e., Strategy 3 in Figure 2).

Retrieval Approaches. We use different retrieval approaches for
the three search strategies. The search strategies and their corre-
sponding retrieval approaches are shown in Table 1.

o Lucene is an IR-based search engine ranking candidates by BM25
score [54]. It supports all three search strategies.

o ReACC-retriever [42] is a DL-based retrieval approach that
leverages RoBERTa [39] model to perform the code search task.
Here we use the method header to find code that matches the
functionality of this retriever (i.e., Header2Code search strategy).
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Figure 2: Overview of our code suggestion framework. It consists of a Retriever, a Formulator, and a Generator. The retriever
uses queries in NL or code to find similar code, with IR-based or DL-based code search tools utilizing different search strategies.
Then the formulator combines retrieved code and the code context according to the specific task (i.e., code completion or code
generation). Finally, the generator makes code predictions at different levels using LMs.

o CodeBERT [14] is a DL-based language model pre-trained on
both NL and code. We fine-tune CodeBERT with pairs of code
and comment to adapt it for NL2Code search strategy.

o Sentence-BERT [52] is a BERT-like [28] model pre-trained on
NL to derive semantically meaningful sentence embeddings. We
use it to capture the similarity between comments in the source
context and the candidate code (i.e., NL2NL search strategy).

3.3 Formulator

The formulator combines the retrieved code snippets with code of
the source context and then transfers it to the generator as its input.
Considering the differences in general DL models and LLMs, we
use two different methods to formulate the input information for
the generator:

e For general DL models, we formulate the generator’s input x
by concatenating the similar code s and code of source context c:
x=s&c.

e For LLMs, which perform well by prompting, we formalize the
process as the task of prompt template filling. Given prompt tem-
plate ¢, set of similar code snippets S, and given code of the source
context ¢, our prompt P for LLMs is formalized as P = fill(t, S, ¢),
where fill means the procedure of inserting content into corre-
sponding positions of the template. The prompt template we
use consists of the introduction (i.e., the task description), exem-
plar(s) (i.e., retrieved similar code), and code context (i.e., method
header). We will discuss the details of template designing in
Section 5.3.

The code context mentioned above depends on the specific task
of code suggestions (i.e., code completion or code generation), and
it will be discussed in Generator below.

3.4 Generator

The generator leverages results returned from the formulator and
performs the tasks of code suggestions accordingly. In our work, we
use different LMs as the generator including general DL models (e.g.,
Transformer-XL [12]) and state-of-the-art LLMs (e.g., ChatGPT [4]).
Specifically, given the formulated input that combines the retrieved
code snippets and code of the source context, the generator learns
from the retrieved code snippets and gives code suggestions. We
use different LMs for different tasks of code suggestion:

e General DL models for code completion: We perform code
completion at both token level and line level. For token-level code
completion, given the formulated input including the retrieved
code snippets and code tokens of source context, we use the
generator to predict the next token following the input. For line-
level code completion, we use the generator to predict the full
statement in the function.

o LLM:s for code generation: The objective of code generation is
to generate the entire method body utilizing the formulated input,
which includes the prompt instruction, retrieved code snippets,
and method header of the source context.

4 EXPERIMENTAL SETUP

In this section, we present the metrics of code suggestions, the
datasets we use in this paper, as well as the implementation details
of our framework.

4.1 Metrics

For code completion tasks at different levels, we use different met-
rics to evaluate the performance of our framework:

e Accuracy (Acc.) (token-level) is the percentage of sequentially
generated tokens that are exactly the same as the target tokens.
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Table 2: Statistics of the datasets.

‘ Generator ‘ Retriever
Dataset CodeXGLUE | CodeMatcher PyTorrent
Language Java  Python Java Python
# Methods in train 147,418 82,143
# Methods in valid 5,150 4,169 10,482,463 2,841,300
# Methods in test 10,729 5,894
# Avg. tokens in code 97.9 92.2 77.2 90.3
# Avg. tokens in comment | 13.2 11.3 10.4 8.1

e BLEU score [48] (line-level) is a metric originally used for ma-
chine translation, and many works use it to evaluate code gener-
ation [18, 26]. In this task, it is computed based on the similarity
of n-gram between generated code and ground truth. We use the
metric where n = 4 (i.e., BLEU-4) following prior studies [34, 64].

e Edit Similarity (ES) measures the similarity between two code
snippets based on the editing operations.

Following metrics are used for evaluation of code generation:

e CodeBLEU score [53] is a variant of BLEU score. On top of
the textual similarity, it further leverages AST and data-flow
structures to evaluate the grammatical correctness and logic
correctness of the source code.

e BLUE is also used in the evaluation of code generation.

4.2 Datasets

Table 2 presents the overall statistics of datasets we use for the
retriever and generator in our framework.

Datasets for Retriever. We use CodeMatcher [35] and PyTor-
rent [7] as the code base for the retrieval of code written in Java
and Python, respectively.

e CodeMatcher [35] is a collection of Java code originally used for
the evaluation of code search. It contains around 10.5M methods
of Java code extracted from over 40,000 GitHub repositories with
at least five stars.

e PyTorrent [7] is a corpus of Python code collected from around
220,000 Python packages in PyPI and Anaconda. This dataset
contains over 2M methods in total.

Besides, we follow CodeXGLUE [43] and fine-tune CodeBERT to
perform NL2Code search strategy with CodeSearchNet dataset [24].

Datasets for Generator. We use CodeXGLUE [43] as the dataset
for our generator and follow its filtering and pre-processing process.
We use the training portion of the dataset for the generator that
requires training, including 147,418 Java methods and 82,143 Python
methods, respectively. We use the testing portion to evaluate the
performance of our framework on code suggestions. In total, the
testing datasets contain 10,729 Java methods and 5,894 Python
methods, respectively. For general DL models, we use the complete
testing datasets for evaluation. For LLMs, we utilize a fixed random
seed to select a sample of 500 examples for RQ2 and 100 examples
for RQ3 due to the costs of utilizing OpenAI API [5].
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4.3 Implementation Details

Information Extraction. In order to implement three search
strategies (i.e., Header2Code, NL2Code, and NL2NL), we need to ex-
tract specific information (i.e., method header and comment) from
the datasets of both the retriever and generator. We use the lan-
guage parser tree-sitter [2] to extract the method header. In terms
of the comment, we extract the first sentence of the documentation
comment for the dataset CodeMatcher and use the given field such
as “summary” in CodeXGLUE and PyTorrent.

Data Leakage Prevention and Preprocessing. In order to alle-
viate data leakage between the retriever and the generator (e.g.,
the generator directly “copies” the searched exemplar from the
same source), we detect the same and similar names of the reposi-
tores and packages (e.g., “pypackage” and “package-py”) between
the datasets of retriever and generator. We then exclude such data
from the generator dataset to remove the overlaps. We deduplicate
the code base and remove the methods that cannot be parsed by
tree-sitter correctly. We follow the preprocessing procedures of
CodeXGLUE to normalize uncommon literals when we use general
DL models. For all the data, we remove the comments inside the
methods to avoid using information apart from code. We remove
all illegal characters and convert comments to lowercase. When us-
ing general DL models, we leverage Byte Pair Encoding (BPE) [55]
algorithm to tokenize code and comments.

Implementation Details. The implementation details of our frame-
work are as follows:

e Retriever: We use Lucene as the IR-based retrieval approach and
three different techniques shown in Table 1 as the DL-based re-
trieval approaches. We fine-tune CodeBERT for NL2Code search
strategy and use released pre-trained models for Header2Code
and NL2NL. We use Faiss [27] to accelerate DL-based retrievers.
Note that ReACC-retriever only supports Python and we do not
apply Header2Code search strategy to DL-based retrievers in
Java.

o Generator: For general DL models, we use the corresponding
official implementations to build our generators. For LLMs, we
invoke OpenAl API to use them.
Training & Testing: For general DL models and CodeBERT (for
NL2Code search strategy), we use NVIDIA GTX 3090 to train and
test them. We only use Top-1 search results in code retrieval for
general DL models. We use early stopping and set the maximum
training steps to limit the cost of training. For LLMs, we set the
maximum number of output tokens to 300 in order to ensure
consistency when using different numbers of similar codes.

5 RESULTS

In this section, we discuss the results by proposing and answering
three research questions.

5.1 RQ1: Does Code Search Improve the
Performance of Code Completion Using
General Deep Learning Models?

Motivation. General DL models (e.g., LSTM) are widely used in
code completion tasks by prior studies [36, 37, 43]. In this RQ, we
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Table 3: Results for general DL models on token-level code completion (RQ1). “Ori”: original models (w/o retrieval). Bold
numbers: best values of the corresponding metric. “IX”: relative improvements over the original models. We omit some
non-highest improvements for conciseness. Percentage before token type: the proportion of tokens belonging to this type.

Token-Level Code Completion: Java

Model Retriever Overall Acc.(%) ~32% Identifier Acc.(%) ~46% Separator Acc.(%)
Ori. Header2Code NL2Code NL2NL Ori. Header2Code  NL2Code NL2NL Ori. Header2Code NL2Code NL2NL
IR-based 70.7 69.1 71.0 13.5 51.9 49.0 52.8 18.0 84.7 84.3 84.8 T1.4
CodeGPT | 1y} based | 90 — 70.2 713139 | 487 — 513 534792 | 536 — 846  84.8714
IR-based 65.3 62.9 65.5 15.5 414 37.4 42.4 718.8 81.9 T1.5 81.0 81.8
Tr-XL 62.1 35.7 80.7
! DL-based — 64.2 65.515.5 — 39.5 41.8 117.1 - 81.8 82.111.7
IR-based 64.8 62.3 65.0 15.7 40.6 36.4 41.7 119.8 81.5 T1.4 80.6 81.5 T1.4
TFM 61. 34.8 80.4
DL-based 5 — 63.6 64.9 15.5 — 38.8 41.2 T18.4 — 81.3 81.4 T1.2
IR-based 53.111.9 52.3 53.111.9 14.8 7113 13.9 14.7 78.311.3 77.6 78.0
LSTM DL-based | 21 — 53.212.1 53.0 133 — 1471105 1471105 | 173 — 78.111.0 777
Av IR-based 61.1 63.513.9 61.7 T1.0 63.7 14.3 332 37.2 112.0 34.2 13.0 37.9 114.2 305 81.6 T1.4 80.9 10.5 81.5 71.2
& DL-based : — 628128  63.7 T4.3 : — 361187  37.8113.9 ’ — 815112 81.571.2
Token-Level Code Completion: Python
Model Retriever Overall Acc.(%) ~36% Identifier Acc.(%) ~26% Separator Acc.(%)
Ori. Header2Code NL2Code NL2NL Ori. Header2Code  NL2Code NL2NL Ori. Header2Code NL2Code NL2NL
IR-based 63.5 61.5 65.2 17.6 47.8 44.7 50.5 116.6 78.8 78.3 80.3 3.6
CodeGPT 60.6 433 77.5
oae DL-based 64.3 63.1 65.8 18.6 48.9 47.2 51.4 118.7 79.2 79.1 80.4 13.7
IR-based 58.1 55.7 60.2 1712.1 39.5 34.7 42.5 136.2 75.2 75.3 77.915.1
Tr-XL 53.7 31.2 74.1
! DL-based 57.3 56.6 60.0 111.7 37.8 36.6 41.5 133.0 73.7 75.2 75.912.4
IR-based 57.4 54.8 59.2 112.3 37.7 33.6 40.6 138.6 75.5 74.2 76.8 14.9
TFM 2. 29. .2
DL-based 527 56.3 55.8 59.0 112.0 3 36.1 35.3 40.2 137.2 & 73.9 73.6 76.0 13.8
IR-based 44.1 43.9 44.212.8 16.0 6.7 16.0 16.7 15.9 66.3 67.0 67.6 T4.6
LSTM DL-based 43.0 44.2 44.2 44.3 13.0 150 15.8 16.117.3 15.9 64.6 65.8 67.2 67.47T4.3
A R-based |, 55.8 16.3 540129 57.279.0 |, .~ 3537189 323788 3747258 | 74.0 12.2 737118  75.714.6
& DL-based : 55.5 15.7 549746  57.319.1 : 347 116.8 3381138  37.3125.4 : 73.2 1.1 738119 74.913.6

investigate the effectiveness of our framework on code completion
with general DL models as the generator.

Approach. For the retriever, we use both the IR-based retriever
Lucene and DL-based retrievers to perform code search with three
search strategies (i.e., Header2Code, NL2Code, and NL2NL). For
the generator, we use the following general DL models which have
been applied to code completion by prior studies [36, 37, 43]:

e LSTM [23] is a variant of classic RNN that adds the memory cell
to vanilla RNN architecture to maintain long-period information.

e Transformer Decoder (TFM) [59] is the decoder part of vanilla
Transformer, which is suitable for generative tasks.

o Transformer-XL (Tr-XL) [12] is a Transformer-based, decoder-
only language model, which utilizes the recurrence mechanism
and relative positioning embeddings to capture the dependency
beyond a fixed-length context.

o CodeGPT [43] is a Transformer-based, decoder-only language
model. It is pre-trained on code and shares the same architecture
with GPT-2 [50].

We conduct experiments of code completion at token level and
line level, respectively. Particularly, for token-level code completion,
we evaluate the accuracy by different types of tokens (i.e., identifier
and separator, which are the top two most common types of tokens
in both Java and Python) motivated by prior studies [25, 36]. We
use the results generated by each model without code retrieval as
baselines.

Results. Table 3 shows the results of token-level code completion
and Table 4 shows the results of line-level code completion, respec-
tively. In each table, Ori. is the original result of each model without
code retrieval. Overall, we find that our retrieval-augmented
framework improves the performances of code completion

Table 4: Results for general DL models on line-level code
completion (RQ1).

Line-Level Code Completion: Java

Model |Retriever BLEU-4 (7) ES (7)
Ori. Header2Code NL2Code NL2NL |Ori. Header2Code NL2Code NL2NL
IR-based 30.9 26.2  33.3126.6 55.7 52.4 57.219.0
CodeGPT| 1y }ased 203 - 287 3381285100  —— 543  57.519.5
IR-based 25.5 213 28.5141.8 51.4 48.2 53.2113.0
TeXL i based |20 — 236 27.4136.37! — 503 5241113
Av, IR-based 23.2 28.2121.6  23.8172.6 30.9 133.2 498 53.6 17.6  50.3 71.0 55.2 110.8
& | DL-based |~ — 26.2112.930.6 131.9| — 523 15.0 55.0 110.4
Line-Level Code Completion: Python
) BLEU-4 (%) ES (%)
Model |Retriever Ori. Header2Code NL2Code NL2NL |Ori. Header2Code NL2Code NL2NL
IR-based 26.6 22.6 317 744.1 51.8 48.8 55.0 113.4
p
CodeGPT) by 1ased |20 269 26 32114595 517 50.3  55.3114.0
IR-based 235 18.8  28.3 153.8 49.1 45.7 52.5116.4
TeXL iy based |84 226 206 281152700 486 471 5221157
A R-based [, 2511243 207725 30.0 1485[,  ~ 505179 4737115381150
& DL-based |~ 24.8122.8 22.6 111.930.1149.0| 50.217.3  48.7 74.1 53.8 115.0

for general DL models at both token level and line level. We
discuss the detailed results of this RQ from different aspects.
Comparison among the models. In general, our framework enhances
all the general DL models to varying degrees. For example, for IR-
based retriever and NL2NL search strategy (represented in the
format of IR-based + NL2NL in the remaining paper), the accuracy
of Tr-XL improves by 5.5% in Java and 12.1% in Python at token
level. In contrast, the increases observed in LSTM at token level are
relatively lower, ranging from 0.4% to 3.0%. We consider that the
suboptimal performance of augmented-LSTM may be due to the
input length increased by concatenated exemplars, which presents
a challenge to learn similarities between similar code and the code
context.

Comparison among the search strategies. The retriever improves the
performance of code completion in general, while different search
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strategies bring different enhancements. As shown in Table 3 and
Table 4, for each model and retriever, the search strategy with
the highest improvement is marked in bold associated with the
relative change. The results indicate that NL2NL search strategy im-
proves the accuracy of code completion to the largest margin, while
NL2Code search strategy bring the most limited improvements in
general. The finding emphasizes the effectiveness of NL2NL search
strategy, which leverages text similarity to find similar code. On the
other hand, the under-performance of NL2Code strategy highlights
the inherent difficulty in cross-modality retrieval (i.e., NL and code).
Besides, DL-based retrievers generally perform better than IR-based
retrievers when using NL2Code search strategy as illustrated in
Table 4. It suggests that deep learning techniques reduce the dis-
parities between NL and code, and enhance DL-based retriever for
the understanding of NL queries.

Token types and languages. In general, we find that the improve-
ment on identifiers is more considerable than other type of tokens.
For example, identifiers receive a higher improvement in Java +
CodeGPT + IR-based + NL2NL, and the improvement obtained by
separators is more subtle (i.e., 8.0% v.s. 1.4%). This discrepancy arises
because separators in code are commonly used and follow regular
patterns, and the results of original models are already high (i.e.,
over 70% for most of the models). The models may hardly capture
additional knowledge for seperators from the retrieved code snip-
pets. Additionally, the proportion of separators in Java is noticeably
higher than in Python (i.e., ~46% v.s. ~26%). This disparity can be
attributed to that Java requires more symbols like commas and
brackets to separate code fragments, whereas Python relies on in-
dents. We consider this difference might be related to the superior
performance of Java code completion compared to Python.
Line-level code completion. As shown in Table 4, we find that our
framework can also improve the performance of line-level code
completion. Similar to token-level code completion, NL2NL per-
forms the best among all the search strategies. For example, the
ES metric is improved by 15.7% in Python + Tr-XL + DL-based us-
ing NL2NL, while the other two search strategies only slightly
outperform the original model (i.e., 48.6% and 47.1% v.s. 45.1%).

Summary of RQ1: Our retrieval-augmented code suggestion
framework observably improves the performance of code comple-
tion for general DL models. Among the search strategies, NL2NL
achieves the best overall improvements.

5.2 RQ2: Does Code Search Improve the
Performance of Code Generation Using
Large Language Models?

Motivation. Recently, the outstanding performance of LLMs on
code generation has attracted widespread attention from the soft-
ware engineering community. Hence, in this RQ, we further com-
bine our code suggestion framework with LLMs to verify the effec-
tiveness of our approach on code generation.

Approach. LLMs leverage prompting to perform the tasks spec-
ified by users [40]. In our framework, the formulator for LLMs
combines code of the source context (i.e., method header) and the
corresponding similar code snippets with a specifically designed
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Table 5: Results for LLMs on code generation (RQ2).

Body-Level Code Generation: Java

1851637 14.7130.124.9 1119.9)
16.0 1416 163 144.2 24.0 1112.4

30.4129.9 275 117.5 34.6 147.9

11.
3 267 114.1 27.7118.4 34.0 145.3

23.4

Model  |Retri BLEU-4 (%) CodeBLEU (%)
ode CHIEVEN| Ori. Header2Code NL2Code  NL2NL |Ori. Header2Code NL2Code  NL2NL
ChatGPT IR-based 201 239 20.6 29.6 147.3 342 36.9 35.3 41.8 122.2
(gpt-3.5-turbo) |DL-based |~ — 227 2991488 — 353  41.6 121.6
GPT-3.5 IR-based 242 245 233 32.0 132.2 353 37.5 36.3 41.9 118.7
(text-davinci-003)| DL-based |~ — 245  31.5130.2| — 358  42.1119.3
Av IR-based |, , 242790 220 3081391, . 372769 358129 4191204
& DL-based | —— 236763 30.7138.6 — 35.612.3 41.9 120.4
Body-Level Code Generation: Python
. BLEU-4 (%) CodeBLEU (%)
Model - Retriever),; poageraCode NL2Code NL2NL  |Ori. Header2Code NL2Code  NL2NL
ChatGPT | R-based [, 181 143 24711308), 297 265 337 142.8
(gpt-3.5-turbo) |DL-based | - 16.2 163 24.21126.2)% 27.0 277 3351419
GPT-35 Rebased || o 188 151 25011100],,, 311 284 35.5153.0
(text-davinci-003)| DL-based | 15.8 163 23.81100.0" 26.4 277 34.5148.7

IR-based
DL-based

Avg.

prompt template, which is formulated as the task of prompt tem-
plate filling. We choose the “detailed, implicit, two-step” prompt
template which is discussed in Section 5.3. For the generator, we
conduct our experiments with two GPT-3.5 series models to verify
the effectiveness of our framework on code generation:

e ChatGPT (gpt-3.5-turbo) is a variant of the GPT-3.5 series model
which shows great performance on generation tasks.

o GPT-3.5 (text-davinci-003) is a GPT-3.5 series model which is
trained via reinforcement learning.

Different from general DL models, we evaluate our framework
using code generation tasks to accommodate LLM’s enhanced gen-
eration capabilities. We use vanilla LLMs as baselines to compare
with LLMs using our framework.

Results. Table 5 presents the results of this RQ. Overall, we find
that large language models in the retrieval-augmented frame-
work we propose achieve significant improvements com-
pared to baselines without retrieval. The performance of code
generation is enhanced across all metrics with the combination of
almost any retrieval approaches and search strategies. For instance,
retrieval-augmented ChatGPT outperforms vanilla ChatGPT by
over 100% (i.e., Python + BLEU-4).

We find our framework brings more noticable improve-
ment on LLMs than general DL models. Compared to general
DL models, LLMs in the framework exhibit a larger margin of rela-
tive improvements. For example, the BLEU-4 score of general DL
models on line-level Python code completion improves from 44.1%
to 53.8%, while the improvement for LLMs on Java code generation
ranges from 100.0% to 130.8% in BLEU-4 score. The results indicate
that LLMs excel at capturing the relationship between the method
header and similar code snippets through proper prompts. Given
that attaching retrieved code snippets can considerably increase
the length of input, the results show that LLMs may have supe-
rior capability in leveraging long inputs than general DL models.
Such capability enables them to imitate searched exemplars like
developers and generate the corresponding method body given the
context.

We find that ChatGPT and GPT-3.5 receive a significantly
higher boost in Python than in Java (i.e., 119.9% v.s. 39.1% in Avg.
+ IR-based + NL2NL). To further explore this, we use several prompts
such as “Give the implementation of the quick sort algorithm.”
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Table 6: Results of different prompt templates for ChatGPT
with and without our framework in RQ3. Bold numbers:
Values ranking top 3 in the column.

Feature | BLEU-4 (%) CodeBLEU (%)

Det. Exp. Ts. ‘ w/ w/o w/ w/o
33.4 20.6 47.0 37.0

v 32.9 20.6 47.5 37.6

v 34.5 215 45.8 34.0

v v 30.1 21.6 43.6 33.8

v 29.7 22.3 445 36.6
v v 34.1 22.0 47.5 36.4
v v 33.7 20.8 44.9 34.5
v v v 32,5 21.1 443 34.3

Det.: Using detailed (with “v”) or brief instruction (without “v”)
Exp.: Using explicit (with “v"”) or implicit instruction (without “v”).
Ts.: Using two-step (with “v/”) or one-step instruction (without “v”).

without specifying the programming language to prompt ChatGPT
to generate code snippets. Through testing a dozen of samples, we
observe that ChatGPT consistently generates Python code snippets
by default. It may indicate that ChatGPT has more proficiency in
Python, and it is consistent with Codex [3] which suggests Python
code more accurately and shares similar code capabilities with
ChatGPT. Additionally, we find that the observations related
to search strategies in RQ1 still hold for this RQ (e.g., NL2NL
outperforms other search strategies).

Summary of RQ2: LLMs in the retrieval-augmented code sug-
gestion framework we propose exhibit improvements of up to
130.8% in terms of BLEU-4 in code generation, surpassing the
margin of improvement on general DL models.

5.3 RQ3: How does Retrieval-Augmented
ChatGPT Perform with Different Shot
Numbers and Prompt Templates ?

Motivation. In RQ2, we find that our framework can improve the
capability of LLMs on code generation. Considering the impres-
sive performance of LLMs in few-shot learning and prompting,
it is important to investigate the effect of varying shot numbers
and prompt templates. Hence, in this RQ, we first examine the
performance of LLMs on code generation using different numbers
of similar code snippets and subsequently analyze the impact of
different prompt templates.

Approach. We use the combination with the best performance in
RQ2 (i.e., ChatGPT and NL2NL) to conduct the experiments using
a range of different shot numbers (i.e., [0, 1, 2, 4, 8]). We do not
experiment with a larger number of similar code snippets due to the
imposed upper limit of input length. We use the evaluation dataset
written in Java discussed in Section 4 to conduct the experiments.
To study the impact of the prompt template, we examine three
distinct features that differentiate various prompt templates, as
illustrated in Figure 3:
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Detailed Brief

Your task is to generate the method According to method header, generate
body according to the method header method body in Java.

and example methods in Java.

“[START] and "[END] represent the
beginning and end of each method.

I will give some examples that are
similar to the method to be completed.
Two-step
|First, learn the meanings of the
1following example methods. ]

|
|

,,,,,,,,,,,,,, Explicit
HEADER:!
Explicit

Y

Two-step
iThen, try to generate the method body}
}according to the method header and ik

the above example functions. |

|
([LNE_above exampLe runctions.

LSTART] Explicit
### _METHOD_HEADER:;
{header} {header}

Figure 3: The illustration of the different prompt templates.
The left prompt template is “detailed, explicit and two-step”,
and the right one is “brief, implicit and single-step.”

IR-based: Java DL-based: Java

50 50
40 1 40
301 /._*/4_—. 30 A /§>/‘_\—‘
0 1 2 4 8 0 1 2 4 8
shot shot

IR-based: Python DL-based: Python

40 A 204
30 A 304
N /*—os N ———o—o
0 1 2 4 8 0 1 2 4 8
shot shot

—e— BLEU-4(%) CodeBLEU(%)
Figure 4: The performance of ChatGPT with NL2NL search
strategy using different numbers of exemplars.

e Detailed / Brief means whether or not to provide a detailed
instruction of the task. For example, the left instruction in Figure 3
is “Detailed” since it provides specific information regarding the
formats of the input. On the contrary, the “Brief” instruction on
the right only provides the basic requirements.

o Explicit / Implicit means whether or not to indicate the method
header and body explicitly. For instance, the left prompt in Fig-
ure 3 (i.e., “Explicit”) uses “###METHOD_HEADER” to explicitly
state the position of the method header, while the right prompt
(i.e., “Implicit”) do not state such position in an explicit way.

e Two-step / One-step means whether or not to add additional
instruction before the prediction. For example, the left prompt
(i.e., “Two-Step”) further specifies the model to generate code
based on the above exemplars, while the right prompt (i.e., “One-
Step”) does not include this information.

Results. Overall, we find that as the shot number increases,
the performance of retrieval-augmented ChatGPT on code
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generation initially rises and then fluctuates. Figure 4 illus-
trates the results of code generation with different shot numbers.
From the line chart, we find that the performance of ChatGPT +
NL2NL consistently improves when the number of shots is in the
range of 1, 2, 4, and 8. However, the improvement is not linear
as the shot number increases. There is a significant boost of the
performance when the number of shots is increased from 0 to 1,
while only a slight improvement is generally observed from 1 to
2 shots. However, when the number of shots reaches 4 and 8, the
performance start to fluctuate and show minor improvement. This
trend is observed across different combinations of retrievers and
languages. Overall, we find that one and two shots can enhance the
performance of code generation compared to zero-shot. This can
be attributed to the increased exposure to similar code examples,
enabling LLMs to learn more information from the exemplar. We
do not find an obvious improvement when the number of shots
increases to 4 and 8. The potential reasons might be: 1) The quality
of similar code starts declining, becoming less relevant to the query,
thereby introducing interference to the model; 2) The increase in
prompt length makes it challenging for the model to comprehend
the context.

ChatGPT demonstrates robust performance on retrieval-
augmented code generation tasks with various types of prompt
templates. We conduct experiments using all combinations of
prompt templates features (e.g., brief/detailed), and the results are
presented in Table 6. We find that ChatGPT achieves improvements
in code generation by all prompt templates with various features,
The "brief, explicit, two-step” and "detailed, implicit, single-step”
templates perform poorly among the template combinations, while
the "detailed, implicit, two-step” prompt template ranks in the top
3 in both metrics. The performances of the other prompt templates
are relatively similar. These results indicate that ChatGPT is gen-
erally robust in generating code using our retrieval-augmented
framework and might be less affected by changes in prompt tem-
plates.

Summary of RQ3: Different numbers of searched exemplars can
enhance ChatGPT’s performance in code generation. Incorporat-
ing a small yet high-quality set of similar code snippets yields
more substantial improvements. Retrieval-augmented ChatGPT
performs well with various prompt templates.

6 DISCUSSION

6.1 Discussion on Existing Retrieval-based Code
Suggestion Approaches

Prior studies proposed some retrieval-based code suggestion ap-
proaches such as ReCode [18] and REDCODER [49]. Compared to
these approaches, our framework has the following main differ-
ences or improvements:

e Usage scenario and mechanism. (1) Our framework is com-
patible with various language models, code search strategies, and
tools without redesigning new model architectures. Its simplicity
and modularity facilitate easy integration with state-of-the-art
code suggestion models. However, existing approaches typically
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Table 7: Results of NL-to-code generation. We use the IR-
based code search tool and NL2NL strategy for retrieval.
Bold numbers: best values in the columns. EM: exact match,
which is the proportion of predictions that exactly match
the ground truth.

‘ Hearthstone Django
Model

| EM BLEU4 EM  BLEUA4
ReCode [18] 19.6 78.4 72.8 84.7
REDCODER [49] 21.2 80.1 —— —
CodeGPT (w/o retrieval) 15.2 80.9 76.5 82.9
CodeGPT (w/ retrieval) | 19.6 78.4 79.2 85.4

employ complicated models and algorithms, rendering them dif-
ficult to transfer to other systems. (2) Our framework employs a
separate large-scale retrieval codebase which allows the genera-
tor to learn semantic relationships between similar code pairs in
the training phrase. (3) Our framework only requires the genera-
tor to handle the code-to-code generation task, whereas existing
approaches typically need to learn both code and NL. Such pro-
cess may also weaken their generality.

e Dataset and evaluation. (1) The popular NL-to-code datasets
(e.g., Hearthstone [34] and Django [47]) are not generic enough
compared to datasets like CodeXGLUE that have a wide variety of
code sources. For example, the Hearthstone dataset (which comes
from a card game) contains highly structured NL descriptions of
cards such as “Acidic Swamp Ooze NAME_END 3 ATK_END 2..”
and significantly repetitive code snippets for similar attributes
of cards. (2) We conduct the evaluation on various generation
granularities, code retrieval setups, and different scales of LMs,
which is commonly absent in prior studies.

Preliminary comparison with our framework. Due to the sig-
nificant differences between the prior approaches and our frame-
work discussed above, we do not include these approaches in our
evaluation in Section 5. Instead, we conduct a preliminary com-
parison of the existing approaches (i.e., ReCode and REDCODER)
with our framework. Specifically, we follow the setup in previous
works [18] [30] and conduct NL-to-code generation experiments
on Hearthstone [34] and Django [47] datasets. For our approach,
we utilize IR-based retriever Lucene and NL2NL search strategy to
retrieve similar code and use CodeGPT as the generator.

Table 7 presents the results of our experiments. Overall, we find
that our approach (i.e., CodeGPT w/ retrieval in Table 7) shows com-
petitive performance compared with the baselines, which demon-
strates the effectiveness of our approach. Specifically, our approach
achieves the best performance in terms of EM and BLEU-4 (i.e., 79.2
and 85.4) on the Django dataset. For the results of the Hearthstone
dataset, CodeGPT without retrieval (i.e., CodeGPT w/o retrieval
in Table 7) fails to generate satisfactory code snippets compared
to ReCode (i.e., 15.2 v.s. 19.6 in EM), but it is improved using our
framework. For the results of the Django dataset, CodeGPT with re-
trieval obtains a 3.5% performance boost in EM (i.e., 76.5—79.2) and
a 0.8% performance boost in BLEU-4 (i.e., 84.7—85.4). We observe
that our approach falls slightly behind the existing approaches in
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Table 8: The time costs of different retrievers to search for
similar code.

Tool Time cost
Training Indexing Searching
Lucene —_ 3m 5s 0.02s
ReACC-retriever N/A 5h 45m 26s 0.03s
CodeBERT 2h 33m 4s 5h 36m 14s 0.03s
Sentence-BERT N/A 55m 5s 0.02s

N/A: The details of the time for training are not available and we do not retrain
or fine-tune these retrievers.

terms of the BLEU-4 metric on the Hearthstone dataset, which may
suggest that our approach is not suitable for a sturctured context
like card game.

6.2 Time Efficiency of Different Retrievers

In real-world scenarios, the latency of code suggestions significantly
impacts developers’ user experience. For example, the time taken
to search for similar code could lead to high time costs for retrieval-
based code suggestion systems. Therefore, we discuss the time
efficiency of different retrievers (i.e., IR-based and DL-based tools)
employed in our framework. We choose Python for analysis because
all search strategies are available for Python. We use PyTorrent (7]
as the code base and CodeXGLUE as the source of queries, which
is consistent with the RQs above.

Table 8 presents the details of time efficiency for different retriev-
ers in our study. For each retriever, we use 100 queries to conduct
the search and report the average time. On the whole, Lucene excels
in the training and indexing phases, and the difference in search
time between the retrievers is not significant. As Lucene is based
on IR techniques rather than learnable approaches, we do not need
to train it before usage. In contrast, DL-based retrievers require
much time to adapt the models. In the indexing phase, the sparse
bag-of-words representation makes Lucene take significantly less
time than other DL-based approaches (i.e., 3m 5s v.s. at least 55m 5s).
Dense retrievers such as CodeBERT need to convert the queries and
code into high-dimensional embeddings, and the calculations on
them are time-consuming. Since Sentence-BERT uses embedding
vectors of lower dimensions than the other two DL-based retrievers,
it has a relatively short indexing time. The retrievers we use in our
framework for the searching phase can perform code retrieval in
a very short period of time (i.e., less than 0.05 seconds), and their
performance can be considered at the same level.

It is worth noting that although building indexes and training
models consume a lot of time for DL-based retrievers, these pro-
cesses are typically performed offline and only need to be done
once in actual usage. Therefore, we pay more attention to the actual
search time of the retriever which has a substantial impact on the
time efficiency of retrieval-based code suggestion systems. Given
that all the retrievers we employed in our framework can retrieve
efficiently (i.e., no more than 0.03s per search), we consider that the
time consumption of similar code retrieval may not be a noticeable
concern for the user experience of code suggestions.
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def escape(t): ChatGPT (zero-shot) Searched exemplar

result = ""
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def escape(t): Ground truth

return (t

.replace("&", "&amp;") !def escape(t): | \/
.replace("<", "&lt;") | t=str(t) ______ i 777777777
.replace(">", "&gt;") : t =|t.replace('&', '&amp;') ;
.replace("'", "&#39;") | t =t.replace('<', '&Llt;') |
.replace('"', "&quot;") . t =jt.replace('>', '&gt;')
.replace(" ", "&nbsp; ") |—--—t->jt.replace('"', '&quot;');
.replace(" ", "&nbsp; ") t =it.replace("'", '&#39;') |
) return t

Figure 5: Examples of code snippets generated by zero-shot
ChatGPT and retrieval-augmented ChatGPT. We omit the
non-code text in the prompts for conciseness.

6.3 Case study

Figure 5 shows the contents of our case study, which includes code
snippets generated by ChatGPT with zero-shot and ChatGPT with
our retrieval-augmented framework. From these examples, we have
the following findings: (1) ChatGPT under the zero-shot setup may
generate logically incorrect code in the absence of sufficient context.
For example in Figure 5, we find that ChatGPT misunderstands the
meaning of the code context (i.e., this function simply concatenates
some special characters such as “<” and “&” into a string rather than
“escape” them). (2) The searched exemplar obtained through code
retrieval serves as a valuable source of context to assist ChatGPT in
generating better code. By comparing the code snippets generated
by retrieval-augmented ChatGPT with the exemplar, we find that
LLMs with retrieval can correct logical errors of code in the zero-
shot setting (i.e., the generated function replaces special tokens
instead of concatenating them, which is consistent with the mean-
ing of “escape”). (3) Our approach could help ChatGPT combine its
own knowledge with exemplars to generate code. In other words,
the model does not simply copy code from the exemplar but learns
the useful code pattern in it. For instance, retrieval-augmented Chat-
GPT not only learns to replace “&” to “&amp;” but also combines
its knowledge of special characters in HTML to generate code that
is closer to the ground truth.

6.4 Implications

According to the findings of our research questions for the proposed
framework, we discuss the implications for the community:

The strategy of code search. According to the results of RQ1 and
RQ2, we observe a strong correlation between the effectiveness of
code suggestions and the search strategies employed by retriev-
ers. Specifically, Header2Code and NL2NL code search strategies
demonstrate significant improvements in code suggestions, which
may indicate that the search results are more accurate. Therefore,
we recommend using the same modality for both the query and the
target (e.g., NL2NL) during the process of code search. Additionally,
when constructing a code base for code search, it is advisable to
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gather bimodal corpora (i.e., NL-code pairs) whenever possible, as
this allows for flexible adjustments to the search strategy.

The technique of code search. As introduced in Section 2, DL
and IR are two commonly used techniques in code search tools.
In our study, we find that there is no significant difference in the
improvements of code suggestion tasks between different code
search techniques (i.e., IR and DL). However, it is worth noting
that DL-based code search tools generally require more time before
available compared to IR-based tools due to the training and index-
ing processes involved as discussed before. Therefore, in most cases,
we believe that IR-based code search tools (e.g., Lucene) are a better
choice in terms of “cost-effectiveness” for retrieval-augmented code
suggestions. In the meantime, we suggest employing DL-based
code search tools when NL2Code search strategy is applied due to
the fact that DL models possess superior capabilities in capturing
cross-modality relationships compared to traditional IR approaches.

The number of shots in the prompt. Exemplars in the prompt
can aid LLMs in accomplishing code generation according to the
results. However, an excessive shot number is not necessarily ad-
vantageous. Our study reveals that shot numbers ranging from 1
to 2 result in notable improvements, whereas an increased number
introduces instability and even regression in performance. There-
fore, we suggest employing a limited number of examples in the
prompt for optimal performance of LLMs.

6.5 Threats to Validity

Internal Validity. One potential threat to internal validity is the
randomness of LLMs’ outputs. During the experiments, we control
the parameters of the API to remain unchanged, varying only the
prompts necessary for the evaluation to mitigate this threat. Due
to the costs and rate limits of invoking OpenAlI APIs, we conduct
the experiments only once. Future studies may consider repeating
the experiments at certain times to investigate the randomness of
LLMs if available.

External Validity. One potential threat to external validity is the
generalizability of our findings which involves datasets, languages,
baselines, and LMs. We conduct our study on both Java and Python
datasets widely used in prior works related to code suggestions [14,
43, 61]. In terms of LMs, we use both general DL models and LLMs
which have different parameter sizes and generation capabilities.
For the baseline models, we compare our framework with the vanilla
models to verify the effectiveness. However, we cannot confirm
that our results can be generalized to other settings. Further studies
could verify the findings of our work.

Construct validity. One potential threat to construct validity is
the evaluation tasks and metrics. We conduct experiments on both
code completion and code generation tasks which are common and
practical in real-world development. The corresponding metrics
for different tasks are commonly used in prior works [25, 29, 34].
Using other metrics may have different results, which can be further
validated by future studies.

7 RELATED WORK

Retrieval-based Code Suggestions. Prior works presented vari-
ous approaches that integrated similar code into code suggestions
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and initially verified that code suggestion tasks could benefit from
code retrieval. Hayati et al. [18] introduced retrieval methods to neu-
ral code generation models. Parvez et al. [49] presented a retrieval-
based approach for code generation that could utilize both unimodal
(NL or code) and bimodal (NL-code pairs) data. Li et al. [30] pro-
posed a sketch-based code generation approach by generating and
editing code sketches from similar code snippets. These works
primarily emphasized the advanced algorithms and sophisticated
models, while our framework explores different code search tech-
niques and strategies for code suggestion tasks.

Code Search. A number of works investigated how to search for
more accurate code given the query. For IR-based code search tech-
niques, related studies mainly focused on utilizing the queries ef-
fectively by expansion and reformulation [21, 41, 44]. For DL-based
code search techniques, these studies generally focused on con-
structing various neural networks to capture the semantic rela-
tionship between the query and code snippets [10, 15, 38]. In this
paper, we emphasize how to leverage existing code search tools
to find similar code as the exemplar for LMs. Specifically, we ex-
plore the impact of different search techniques and strategies on
the improvement of code suggestions.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a retrieval-augmented framework for code
suggestions. We integrate different code search techniques, search
strategies, and language models into our framework and evaluate
the performance. The results show that our framework noticeably
improves the performance of code suggestions by a large margin.
In addition, we also study the impact of shot numbers and prompt
templates for retrieval-augmented ChatGPT. In the future, we may
explore the profound impact of retrieval on code suggestions, and
further unleash the potential of retrieval-augmented approaches to
more tasks in software engineering.
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